Patents by Inventor Bharat Chowrira

Bharat Chowrira has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150105445
    Abstract: The present invention concerns methods and reagents useful in modulating gene expression in a variety of applications, including use in therapeutic, diagnostic, target validation, and genomic discovery applications. Specifically, the invention relates to synthetic chemically modified small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules capable of mediating RNA interference (RNAi) against target nucleic acid sequences. The small nucleic acid molecules are useful in the treatment of any disease or condition that responds to modulation of gene expression or activity in a cell, tissue, or organism.
    Type: Application
    Filed: August 13, 2014
    Publication date: April 16, 2015
    Applicant: SIRNA THERAPEUTICS, INC.
    Inventors: James McSwiggen, Bharat Chowrira, Leonid Beigelman, Dennis Macejak, Shawn Zinnen, Pamela Pavco, Peter Haeberli, David Morrissey, Kathy Fosnaugh, Sharon F. Jamison, Nassim Usman, James Thompson, Chandra Vargeese, Weimin Wang, Tongqian Chen, Narendra K. Vaish
  • Patent number: 8846894
    Abstract: The present invention concerns methods and reagents useful in modulating gene expression in a variety of applications, including use in therapeutic, diagnostic, target validation, and genomic discovery applications. Specifically, the invention relates to synthetic chemically modified small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules capable of mediating RNA interference (RNAi) against target nucleic acid sequences. The small nucleic acid molecules are useful in the treatment of any disease or condition that responds to modulation of gene expression or activity in a cell, tissue, or organism.
    Type: Grant
    Filed: February 16, 2007
    Date of Patent: September 30, 2014
    Assignee: Sirna Therapeutics, Inc.
    Inventors: James McSwiggen, Bharat Chowrira, Leonid Beigelman, Dennis Macejak, Shawn Zinnen, Pamela Pavco, Peter Haeberli, David Morrissey, Kathy Fosnaugh, Sharon F Jamison, Nassim Usman, James Thompson, Chandra Vargeese, Weimin Wang, Tongqian Chen, Narendra K Vaish
  • Publication number: 20090023675
    Abstract: The present invention concerns methods and reagents useful in modulating gene expression in a variety of applications, including use in therapeutic, diagnostic, target validation, and genomic discovery applications. Specifically, the invention relates to synthetic chemically modified small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules capable of mediating RNA interference (RNAi) against target nucleic acid sequences. The small nucleic acid molecules are useful in the treatment of any disease or condition that responds to modulation of gene expression or activity in a cell, tissue, or organism.
    Type: Application
    Filed: April 17, 2008
    Publication date: January 22, 2009
    Applicant: SIRNA THERAPEUTICS, INC.
    Inventors: James McSwiggen, Bharat Chowrira, Leonid Beigelman, Dennis Macejak, Shawn Zinnen, Pamela Pavco, Peter Haeberli, David Morrissey, Kathy Fosnaugh, Sharon Jamison, Nassim Usman, James Thompson, Chandra Vargeese, Weimin Wang, Tongqian Chen, Narendra Vaish
  • Publication number: 20080039414
    Abstract: The present invention concerns methods and reagents useful in modulating gene expression in a variety of applications, including use in therapeutic, diagnostic, target validation, and genomic discovery applications. Specifically, the invention relates to synthetic chemically modified small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules capable of mediating RNA interference (RNAi) against target nucleic acid sequences. The small nucleic acid molecules are useful in the treatment of any disease or condition that responds to modulation of gene expression or activity in a cell, tissue, or organism.
    Type: Application
    Filed: October 23, 2003
    Publication date: February 14, 2008
    Inventors: James McSwiggen, Bharat Chowrira, Leonid Beigelman, Dennis Macejak, Shawn Zinnen, Pamela Pavco, Peter Haeberli, David Morrisey, Kathy Fosnaugh, Sharon Jamison, Nassim Usman, James Thompson, Chandra Vargeese, Weimen Wang, Tongqian Chen, Narendra Vaish
  • Publication number: 20070270360
    Abstract: The present invention concerns methods and reagents useful in modulating gene expression in a variety of applications, including use in therapeutic, diagnostic, target validation, and genomic discovery applications. Specifically, the invention relates to synthetic chemically modified small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules capable of mediating RNA interference (RNAi) against target nucleic acid sequences. The small nucleic acid molecules are useful in the treatment of any disease or condition that responds to modulation of gene expression or activity in a cell, tissue, or organism.
    Type: Application
    Filed: April 13, 2004
    Publication date: November 22, 2007
    Applicant: SIRNA THERAPEUTICS, INC.
    Inventors: James McSwiggen, Bharat Chowrira, Peter Haeberli
  • Publication number: 20070185043
    Abstract: This invention relates to compounds, compositions, and methods useful for modulating NOGO and/or NOGO receptor gene expression using short interfering nucleic acid (siNA) molecules. This invention also relates to compounds, compositions, and methods useful for modulating the expression and activity of other genes involved in pathways of NOGO and/or NOGO receptor gene expression and/or activity by RNA interference (RNAi) using small nucleic acid molecules.
    Type: Application
    Filed: August 20, 2004
    Publication date: August 9, 2007
    Applicant: Sima Therapeutics, Inc.
    Inventors: James McSwiggen, Bharat Chowrira, Peter Haeberli
  • Publication number: 20070167393
    Abstract: The present invention concerns methods and reagents useful in modulating gene expression in a variety of applications, including use in therapeutic, diagnostic, target validation, and genomic discovery applications. Specifically, the invention relates to synthetic chemically modified small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules capable of mediating RNA interference (RNAi) against target nucleic acid sequences. The small nucleic acid molecules are useful in the treatment of any disease or condition that responds to modulation of gene expression or activity in a cell, tissue, or organism.
    Type: Application
    Filed: February 16, 2007
    Publication date: July 19, 2007
    Applicant: Sirna Therapeutics, Inc.
    Inventors: James McSwiggen, Bharat Chowrira, Leonid Beigelman, Dennis Macejak, Shawn Zinnen, Pamela Pavco, Peter Haeberli, David Morrissey, Kathy Fosnaugh, Sharon Jamison, Nassim Usman, James Thompson, Chandra Vargeese, Weimin Wang, Tongqian Chen, Narendra Vaish
  • Publication number: 20070093437
    Abstract: This invention relates to compounds, compositions, and methods useful for modulating XIAP gene expression using short interfering nucleic acid (siNA) molecules. This invention also relates to compounds, compositions, and methods useful for modulating the expression and activity of other genes involved in pathways of XIAP gene expression and/or activity by RNA interference (RNAi) using small nucleic acid molecules. In particular, the instant invention features small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules and methods used to modulate the expression of XIAP genes.
    Type: Application
    Filed: August 6, 2004
    Publication date: April 26, 2007
    Applicant: Sirna Therapeutics, Inc.
    Inventors: Bharat Chowrira, James McSwiggen
  • Publication number: 20070026394
    Abstract: The present invention relates to nucleic acid molecules, including antisense, enzymatic nucleic acid molecules, and RNA interference molecules, such as hammerhead ribozymes, DNAzymes, allozymes, siRNA, decoys and antisense, which modulate the expression of prostaglandin D2 (PTGDS), prostaglandin D2 receptor (PTGDR), adenosine receptor, NOGO and NOGO receptor, and IKK genes, such as IKK-gamma, IKK-alpha, or IKK-beta, and PKR genes.
    Type: Application
    Filed: April 3, 2002
    Publication date: February 1, 2007
    Inventors: Lawrence Blatt, Bharat Chowrira, Peter Haeberli, James McSwiggen, Kathy Fosnaugh
  • Publication number: 20070004663
    Abstract: The present invention concerns methods and reagents useful in modulating gene expression in a variety of applications, including use in therapeutic, diagnostic, target validation, and genomic discovery applications. Specifically, the invention relates to synthetic chemically modified small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules capable of mediating RNA interference (RNAi) against target nucleic acid sequences. The small nucleic acid molecules are useful in the treatment of any disease or condition that responds to modulation of gene expression or activity in a cell, tissue, or organism.
    Type: Application
    Filed: August 4, 2006
    Publication date: January 4, 2007
    Applicant: Sirna Therapeutics, Inc.
    Inventors: James McSwiggen, Bharat Chowrira, Leonid Beigelman, Dennis Macejak, Shawn Zinnen, Pamela Pavco, Peter Haeberli, David Morrissey, Kathy Fosnaugh, Sharon Jamison, Nassim Usman, James Thompson, Chandra Vargeese, Weimin Wang, Tongqian Chen, Narendra Vaish
  • Publication number: 20070004667
    Abstract: The present invention concerns methods and reagents useful in modulating gene expression in a variety of applications, including use in therapeutic, diagnostic, target validation, and genomic discovery applications. Specifically, the invention relates to synthetic chemically modified small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules capable of mediating RNA interference (RNAi) against target nucleic acid sequences. The small nucleic acid molecules are useful in the treatment of any disease or condition that responds to modulation of gene expression or activity in a cell, tissue, or organism.
    Type: Application
    Filed: August 11, 2006
    Publication date: January 4, 2007
    Applicant: Sirna Therapeutics, Inc.
    Inventors: James McSwiggen, Bharat Chowrira, Leonid Beigelman, Dennis Macejak, Shawn Zinnen, Pamela Pavco, Peter Haeberli, David Morrissey, Kathy Fosnaugh, Sharon Jamison, Nassim Usman, James Thompson, Chandra Vargeese, Weimin Wang, Tongqian Chen, Narendra Vaish
  • Publication number: 20070004665
    Abstract: The present invention concerns methods and reagents useful in modulating gene expression in a variety of applications, including use in therapeutic, diagnostic, target validation, and genomic discovery applications. Specifically, the invention relates to synthetic chemically modified small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules capable of mediating RNA interference (RNAi) against target nucleic acid sequences. The small nucleic acid molecules are useful in the treatment of any disease or condition that responds to modulation of gene expression or activity in a cell, tissue, or organism.
    Type: Application
    Filed: August 4, 2006
    Publication date: January 4, 2007
    Applicant: Sirna Therapeutics, Inc.
    Inventors: James McSwiggen, Bharat Chowrira, Leonid Beigelman, Dennis Macejak, Shawn Zinnen, Pamela Pavco, Peter Haeberli, David Morrissey, Kathy Fosnaugh, Sharon Jamison, Nassim Usman, James Thompson, Chandra Vargeese, Weimin Wang, Tongqian Chen, Narendra Vaish
  • Publication number: 20070004664
    Abstract: The present invention concerns methods and reagents useful in modulating gene expression in a variety of applications, including use in therapeutic, diagnostic, target validation, and genomic discovery applications. Specifically, the invention relates to synthetic chemically modified small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules capable of mediating RNA interference (RNAi) against target nucleic acid sequences. The small nucleic acid molecules are useful in the treatment of any disease or condition that responds to modulation of gene expression or activity in a cell, tissue, or organism.
    Type: Application
    Filed: August 4, 2006
    Publication date: January 4, 2007
    Applicant: Sirna Therapeutics, Inc.
    Inventors: James McSwiggen, Bharat Chowrira, Leonid Beigelman, Dennis Macejak, Shawn Zinnen, Pamela Pavco, Peter Haeberli, David Morrissey, Kathy Fosnaugh, Sharon Jamison, Nassim Usman, James Thompson, Chandra Vargeese, Weimin Wang, Tongqian Chen, Narendra Vaish
  • Publication number: 20060293272
    Abstract: The present invention concerns methods and reagents useful in modulating gene expression in a variety of applications, including use in therapeutic, diagnostic, target validation, and genomic discovery applications. Specifically, the invention relates to synthetic chemically modified small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules capable of mediating RNA interference (RNAi) against target nucleic acid sequences. The small nucleic acid molecules are useful in the treatment of any disease or condition that responds to modulation of gene expression or activity in a cell, tissue, or organism.
    Type: Application
    Filed: August 4, 2006
    Publication date: December 28, 2006
    Applicant: Sirna Therapeutics, Inc.
    Inventors: James McSwiggen, Bharat Chowrira, Leonid Beigelman, Dennis Macejak, Shawn Zinnen, Pamela Pavco, Peter Haeberli, David Morrissey, Kathy Fosnaugh, Sharon Jamison, Nassim Usman, James Thompson, Chandra Vargeese, Weimin Wang, Tongqian Chen, Narendra Vaish
  • Publication number: 20060292691
    Abstract: The present invention concerns methods and reagents useful in modulating gene expression in a variety of applications, including use in therapeutic, diagnostic, target validation, and genomic discovery applications. Specifically, the invention relates to synthetic chemically modified small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules capable of mediating RNA interference (RNAi) against target nucleic acid sequences. The small nucleic acid molecules are useful in the treatment of any disease or condition that responds to modulation of gene expression or activity in a cell, tissue, or organism.
    Type: Application
    Filed: August 11, 2006
    Publication date: December 28, 2006
    Applicant: Sirna Therapeutics, Inc.
    Inventors: James McSwiggen, Bharat Chowrira, Leonid Beigelman, Dennis Macejak, Shawn Zinnen, Pamela Pavco, Peter Haeberli, David Morrissey, Kathy Fosnaugh, Sharon Jamison, Nassim Usman, James Thompson, Chandra Vargeese, Weimin Wang, Tongqian Chen, Narendra Vaish
  • Publication number: 20060293271
    Abstract: The present invention concerns methods and reagents useful in modulating gene expression in a variety of applications, including use in therapeutic, diagnostic, target validation, and genomic discovery applications. Specifically, the invention relates to synthetic chemically modified small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules capable of mediating RNA interference (RNAi) against target nucleic acid sequences. The small nucleic acid molecules are useful in the treatment of any disease or condition that responds to modulation of gene expression or activity in a cell, tissue, or organism.
    Type: Application
    Filed: August 4, 2006
    Publication date: December 28, 2006
    Applicant: Sirna Therapeutics, Inc.
    Inventors: James McSwiggen, Bharat Chowrira, Leonid Beigelman, Dennis Macejak, Shawn Zinnen, Pamela Pavco, Peter Haeberli, David Morrissey, Kathy Fosnaugh, Sharon Jamison, Nassim Usman, James Thompson, Chandra Vargeese, Weimin Wang, Tongqian Chen, Narendra Vaish
  • Publication number: 20060287266
    Abstract: The present invention concerns methods and reagents useful in modulating gene expression in a variety of applications, including use in therapeutic, diagnostic, target validation, and genomic discovery applications. Specifically, the invention relates to synthetic chemically modified small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules capable of mediating RNA interference (RNAi) against target nucleic acid sequences. The small nucleic acid molecules are useful in the treatment of any disease or condition that responds to modulation of gene expression or activity in a cell, tissue, or organism.
    Type: Application
    Filed: February 21, 2006
    Publication date: December 21, 2006
    Applicant: Sirna Therapeutics, Inc.
    Inventors: James McSwiggen, Bharat Chowrira, Leonid Beigelman, Dennis Macejak, Shawn Zinnen, Pamela Pavco, Peter Haeberli, David Morrissey, Kathy Fosnaugh, Sharon Jamison, Nassim Usman, James Thompson, Chandra Vargeese, Weimin Wang, Tongqian Chen, Narendra Vaish
  • Publication number: 20060281175
    Abstract: The present invention concerns methods and reagents useful in modulating gene expression in a variety of applications, including use in therapeutic, diagnostic, target validation, and genomic discovery applications. Specifically, the invention relates to synthetic chemically modified small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules capable of mediating RNA interference (RNAi) against target nucleic acid sequences. The small nucleic acid molecules are useful in the treatment of any disease or condition that responds to modulation of gene expression or activity in a cell, tissue, or organism.
    Type: Application
    Filed: August 11, 2006
    Publication date: December 14, 2006
    Applicant: Sirna Therapeutics, Inc.
    Inventors: James McSwiggen, Bharat Chowrira, Leonid Beigelman, Dennis Macejak, Shawn Zinnen, Pamela Pavco, Peter Haeberli, David Morrissey, Kathy Fosnaugh, Sharon Jamison, Nassim Usman, James Thompson, Chandra Vargeese, Weimin Wang, Tongqian Chen, Narendra Vaish
  • Publication number: 20060275903
    Abstract: The present invention concerns methods and reagents useful in modulating gene expression in a variety of applications, including use in therapeutic, diagnostic, target validation, and genomic discovery applications. Specifically, the invention relates to synthetic chemically modified small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules capable of mediating RNA interference (RNAi) against target nucleic acid sequences. The small nucleic acid molecules are useful in the treatment of any disease or condition that responds to modulation of gene expression or activity in a cell, tissue, or organism.
    Type: Application
    Filed: August 11, 2006
    Publication date: December 7, 2006
    Applicant: Sirna Therapeutics, Inc.
    Inventors: James McSwiggen, Bharat Chowrira, Leonid Beigelman, Dennis Macejak, Shawn Zinnen, Pamela Pavco, Peter Haeberli, David Morrissey, Kathy Fosnaugh, Sharon Jamison, Nassim Usman, James Thompson, Chandra Vargeese, Weimin Wang, Tongqian Chen, Narendra Vaish
  • Publication number: 20060276635
    Abstract: The present invention concerns methods and reagents useful in modulating gene expression in a variety of applications, including use in therapeutic, diagnostic, target validation, and genomic discovery applications. Specifically, the invention relates to synthetic chemically modified small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules capable of mediating RNA interference (RNAi) against target nucleic acid sequences. The small nucleic acid molecules are useful in the treatment of any disease or condition that responds to modulation of gene expression or activity in a cell, tissue, or organism.
    Type: Application
    Filed: August 4, 2006
    Publication date: December 7, 2006
    Applicant: Sirna Therapeutics, Inc.
    Inventors: James McSwiggen, Bharat Chowrira, Leonid Beigelman, Dennis MacEjak, Shawn Zinnen, Pamela Pavco, Peter Haeberli, David Morrissey, Kathy Fosnaugh, Sharon Jamison, Nassim Usman, James Thompson, Chandra Vargeese, Weimin Wang, Tongqian Chen, Narendra Vaish