Patents by Inventor Bharat R. Acharya

Bharat R. Acharya has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240151586
    Abstract: An optical device for sensing a presence of an analyte in a person is provided. The optical device includes a light source, an optical stack, and a reader. The light source emits a first light having a first wavelength. The optical stack is placed on a skin of the person. The optical stack includes a sensor material and an optical filter. The sensor material emits a second light having a second wavelength when irradiated with the first light. An optical property of the second light is sensitive to the presence of the analyte. The optical filter is disposed on the sensor material and includes a plurality of microlayers numbering at least 10 in total. The optical filter has different first and second transmittances at the respective first and second wavelengths.
    Type: Application
    Filed: February 1, 2022
    Publication date: May 9, 2024
    Inventors: John A. Wheatley, Dawn V. Muyres, Jason W. Bjork, Mark August Roehrig, Gilles J. Benoit, Theresa J. Gerten, Zhaohui Yang, Audrey A. Sherman, Bharat R. Acharya, Edward J. Kivel
  • Publication number: 20240125704
    Abstract: An optical stack for sensing a presence of an analyte is provided. The optical stack includes a sensor material. The sensor material includes a first optical response including a first optical property having a second value in response to an excitation signal including the first optical property having a first value different from the second value. The first optical response includes a second optical property sensitive to the presence of the analyte. The optical stack includes a first optical film disposed proximate the sensor material and includes a third optical property having respective third and fourth values in response to the respective first and second values of the first optical property. The third value is different from the fourth value by at least a factor of 2.
    Type: Application
    Filed: February 3, 2022
    Publication date: April 18, 2024
    Inventors: Jessica E. Demay, John A. Wheatley, William J. Gray, Johah Shaver, Neil Percy, Aaron M. Marcella, Stephen M. Kennedy, Zhaohui Yang, Bharat R. Acharya
  • Patent number: 11960683
    Abstract: A display system for sensing a finger of a user applied to the display system includes a display panel; a sensor for sensing the finger; a sensing light source configured to emit a first light having a first wavelength W1; and a reflective polarizer disposed between the display panel and the sensor. For a substantially normally incident light, an optical transmittance of the reflective polarizer versus wavelength for a first polarization state has a band edge such that for a first wavelength range extending from a smaller wavelength L1 to a greater wavelength L2 and including W1, where 30 nm?L2?L1?50 nm and L1 is greater than and within about 20 nm of a wavelength L3 corresponding to an optical transmittance of about 50% along the band edge, the optical transmittance has an average of greater than about 75%.
    Type: Grant
    Filed: May 4, 2021
    Date of Patent: April 16, 2024
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Bharat R. Acharya, Robert D. Taylor, Joseph P. Attard, Benjamin J. Forsythe, David T. Yust, Matthew E. Sousa, Jason S. Petaja, Anthony M. Renstrom, William Blake Kolb, Matthew S. Cole, Matthew S. Stay, Matthew R. D. Smith, Jeremy O. Swanson, Tri D. Pham, David A. Rosen, Qunyi Chen, Lisa A. DeNicola, Quinn D. Sanford, Carl A. Stover, Lin Zhao, Gilles J. Benoit
  • Publication number: 20240115746
    Abstract: A device including a housing that is substantially impermeable to ultraviolet radiation having a wavelength of from 280 nm to 400 nm, and at least one window defined in the housing, the window including a UV-C radiation band-pass mirror film having a multiplicity of alternating first and second optical layers collectively transmitting UV-C radiation at a wavelength from at least 100 nm to less than 280 nm and not transmitting UV-A and UV-B radiation at a wavelength of from 280 nm to 400 nm, and an ultraviolet radiation source positioned within the housing, the ultraviolet radiation source being capable of emitting ultraviolet radiation at one or more wavelength from 100 nm to 400 nm. The device optionally further includes an ultraviolet mirror film positioned within the housing so as to reflect ultraviolet radiation emitted by the ultraviolet radiation source. A method of disinfecting a material is also disclosed.
    Type: Application
    Filed: November 23, 2021
    Publication date: April 11, 2024
    Inventors: Timothy J. Hebrink, John A. Wheatley, Bharat R. Acharya, Tao Liu, Stephen P. Maki, Gilles J.B. Benoit, Sean M. Sweetnam
  • Patent number: 11926717
    Abstract: Polymer matrix composite comprising a porous polymeric network; and a plurality of thermally insulating particles distributed within the polymeric network structure, wherein the thermally insulating particles are present in a range from 15 to 99 weight percent, based on the total weight of the thermally insulating particles and the polymer (excluding the solvent); and wherein the polymer matrix composite has a density not greater than 3 g/cm3; and methods for making the same. The polymer matrix composites are useful, for example, in electronic devices.
    Type: Grant
    Filed: October 8, 2020
    Date of Patent: March 12, 2024
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Derek J. Dehn, Clinton P. Waller, Jr., Bharat R. Acharya
  • Publication number: 20240053522
    Abstract: An optical construction includes a reflective polarizer and an optical film. The optical film includes a matrix and a plurality of first particles dispersed in the matrix. Each of the matrix and the plurality of first particles includes a silicone polyoxamide and an acrylate polymer. For substantially normally incident light and for at least a first wavelength in a first wavelength range, the reflective polarizer reflects about 60% for a first polarization state and transmits about 40% for an orthogonal second polarization state. For at least a second wavelength in a second wavelength range, each of the reflective polarizer and the optical film transmits about 60% of an incident light for each of the first and second polarization states. For at least the first wavelength, optical film has an optical haze and a depolarization ratio. A ratio of the depolarization ratio to the optical haze is less than 0.1.
    Type: Application
    Filed: November 2, 2021
    Publication date: February 15, 2024
    Inventors: Bharat R. Acharya, Brett J. Sitter, Robert D. Taylor, Zhicheng Tian, James P. DiZio, Quinn D. Sanford, Kent C. Hackbarth, Matthew E. Sousa
  • Publication number: 20240036235
    Abstract: An optical film (100) includes a plurality of polymeric layers (40) disposed between opposing first (11) and second (12) outer layers, a thinnest polymeric layer in the plurality of polymeric layers disposed closer to the first outer layer (11) and a thickest polymeric layer disposed closer to the second outer layer (12). A layer thickness gradient of the optical film (100) includes first (43) and second (45) portions joined by a step portion (20), a change in thickness across the step portion (20) at least 5 times greater than a change in thickness across each of the first (43) and second (45) portions, wherein the optical film (100) has a first average transmission percentage, TA1, in a first wavelength range, a peak transmission percentage, Tp, in a different, second wavelength range. The first wavelength range and the second wavelength range are separated by a third wavelength range with a third average transmission percentage, TA3, such that TA1>Tp>30(TA3).
    Type: Application
    Filed: December 17, 2021
    Publication date: February 1, 2024
    Inventors: John A. Wheatley, Gilles J. Benoit, Mark A. Roehrig, Bharat R. Acharya, Serena L. Schleusner, Zhaohui Yang
  • Patent number: 11885999
    Abstract: An optical construction includes a reflective polarizer and an optically diffusive film disposed on the reflective polarizer. The reflective polarizer includes an outer layer including a plurality of first particles partially protruding from a first major surface thereof to form a structured major surface. A first optically diffusive layer is conformably disposed on the structured major surface. The optically diffusive film includes a second optically diffusive layer including a plurality of nanoparticles dispersed therein, and a structured layer including a structured major surface. For a substantially normally incident light and a visible wavelength range from about 450 nm to about 650 nm and an infrared wavelength range from about 930 nm to about 970 nm, the second optically diffusive layer has an average specular transmittance Vs in the visible wavelength range and an average specular transmittance Is in the infrared wavelength range, where Is/Vs?2.5.
    Type: Grant
    Filed: May 4, 2021
    Date of Patent: January 30, 2024
    Assignee: 3M INNOVATION PROPERTIES COMPANY
    Inventors: Bharat R. Acharya, Robert D. Taylor, Joseph P. Attard, Benjamin J. Forsythe, David T. Yust, Matthew E. Sousa, Jason S. Petaja, Anthony M. Renstrom, William Blake Kolb, Matthew S. Cole, Matthew S. Stay, Matthew R.D. Smith, Jeremy O. Swanson, Tri D. Pham, David A. Rosen, Qunyi Chen, Lisa A. DeNicola, Quinn D. Sanford, Carl A. Stover, Lin Zhao, Gilles J. Benoit
  • Publication number: 20240023905
    Abstract: A display system for sensing a user body portion, including a display panel configured to form an image for viewing by the user, an optical reflector having a plurality of polymeric layers, and at least one optical sensor for sensing a visible light having at least one visible wavelength and an infrared light having at least one infrared wavelength. The optical sensor senses the visible and infrared lights after the visible and infrared lights are transmitted by the optical reflector. The optical reflector has an average optical reflectance greater than 80% in the visible wavelength range, an optical transmittance greater than about 50% at the infrared wavelength, an optical transmittance of greater than about 2% and less than about 10% at the visible wavelength, and an optical transmittance versus wavelength with a bandpass segment having a full width at half maximum that includes the visible wavelength.
    Type: Application
    Filed: December 15, 2021
    Publication date: January 25, 2024
    Inventors: Zhiping Liu, Fan Long, John A. Wheatley, Bharat R. Acharya, Ryan T. Fabick, Zhe Hu, Edward J. Kivel
  • Patent number: 11880104
    Abstract: A reflective polarizer has a transmittance for a first polarization state having a band edge separating a first wavelength range extending at least from about 450 nm to about 900 nm and a second wavelength range extending at least from about 1100 nm to about 1300 nm. For the first polarization state, the reflective polarizer has an average transmittance in the first wavelength range less than about 10% and an average transmittance in the second wavelength range greater than about 80%; and for a second polarization state, the reflective polarizer has an average transmittance in the first wavelength range greater than about 40% and an average transmittance in the second wavelength range greater than about 80%. A display system includes the reflective polarizer and an infrared light source configured to emit an infrared light having a wavelength W1. The band edge has a band edge wavelength W2>W1.
    Type: Grant
    Filed: September 10, 2021
    Date of Patent: January 23, 2024
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Carl A Stover, Robert D. Taylor, Bharat R. Acharya
  • Patent number: 11866565
    Abstract: Polymer matrix composite comprising a porous polymeric network; and a plurality of intumescent particles distributed within the polymeric network structure; wherein the intumescent particles are present in a range from 15 to 99 weight percent, based on the total weight of the intumescent particles and the polymer (excluding the solvent); and wherein the polymer matrix composite volumetrically expands at least 2 times its initial volume when exposed to at least one temperature greater than 135° C.; and methods for making the same. The polymer matrix composites are useful, for example, as fillers, thermally initiated fuses, and fire stop devices.
    Type: Grant
    Filed: January 22, 2021
    Date of Patent: January 9, 2024
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Derek J. Dehn, Bharat R. Acharya, Brandon A. Bartling, Paul T. Hines, Clinton P. Waller, Jr., Satinder K. Nayar
  • Publication number: 20230418079
    Abstract: A display system for imaging a user body portion includes a display panel, an optical sensor disposed on the display panel and configured to detect light reflected by the user body portion, and an optical stack disposed between the display panel and the optical sensor. The optical stack includes a first optical reflector and a light collimating film. The light collimating film includes a plurality of substantially coplanar alternating first and second regions. For an incident light, a visible wavelength range, and an infrared wavelength range, and for each of a first incident angle of less than about 5 degrees and a second incident angle of between about 40 degrees and about 70 degrees, the plurality of polymeric layers has an average optical reflectance of greater than about 70% in the visible wavelength range and an optical transmittance of greater than about 30% in the infrared wavelength range.
    Type: Application
    Filed: December 2, 2021
    Publication date: December 28, 2023
    Inventors: Shine Long, Xue Mao, Jingfei Chen, Bharat R. Acharya, Huijie Xie, Zhiping Liu, Zhe Hu
  • Publication number: 20230393054
    Abstract: A measurement system is disclosed and includes a light source, a receiver, a measurement subject, and a reflector. The reflector is disposed on an opposite side of the measurement subject than are the light source and the receiver.
    Type: Application
    Filed: September 30, 2021
    Publication date: December 7, 2023
    Inventors: John A. Wheatley, William Gray, Bharat R. Acharya, Aaron M. Marcella, Stephen M. Kennedy, Brett J. Sitter, Micheal L. Steiner, Mark A. Roehrig, Jonah Shaver, Jessica E. DeMay
  • Publication number: 20230384507
    Abstract: An optical construction includes an optical film between first and second prismatic films, which each include pluralities of parallel, linear first and second prisms. Each of the first and second prisms have opposing first and second sides extending from first and second ends of a base of the prism and meeting at a peak. The first and second sides make first and second base angles with the base of the prism. The peaks of the prismatic films face away from each other and the optical film. For a collimated, normally incident light, for at least a first wavelength in a first wavelength range, and for each of first and second polarization states: the optical film has an optical transmission of less than about 1%, and the optical construction transmits at least 1% of the incident light at an oblique angle greater than 5 degrees with respect to the optical film.
    Type: Application
    Filed: May 18, 2023
    Publication date: November 30, 2023
    Inventors: Bharat R. Acharya, John A. Wheatley, Andrew J. Carlson
  • Patent number: 11828972
    Abstract: An optical system includes an extended illumination source configured to emit light from an extended emission surface thereof and a light redirecting layer disposed on the extended emission surface. The light redirecting layer has a structured major surface that includes a regular array of light redirecting structures, each light redirecting structure including a plurality of facets; and a plurality of discrete spaced apart window segments. The optical system includes a plurality of reflective segments where each reflective segment is disposed on a corresponding window segment. For substantially normally incident light, each reflective segment has a total: average optical reflectance of at least 30% in a visible wavelength range extending from about 420 nm to about 650 nm; and optical transmittance of at least 10% for at least one infrared wavelength in an infrared wavelength range extending from about 800 nm to about 1200 nm.
    Type: Grant
    Filed: October 2, 2020
    Date of Patent: November 28, 2023
    Assignee: 3M Innovative Properties Company
    Inventors: Tao Liu, Gary T. Boyd, David A. Rosen, Bharat R. Acharya, Kevin W. Gotrik, David J. Rowe, Caleb T. Nelson
  • Publication number: 20230367057
    Abstract: An optical construction (100) includes a lightguide (102), a transmissive reflector (112), and an optical sensor (114). The lightguide (102) includes a first major surface (104) and a second major surface (106) opposite to the first major surface (104). The first major surface (104) includes a first portion (108) and an adjoining second portion (110). The transmissive reflector (112) is disposed adjacent to the first major surface (104) of the lightguide (102). The optical sensor (114) is disposed adjacent to the transmissive reflector (112) opposite to the lightguide (102). The optical sensor (114) is aligned with the first portion (108) of the first major surface (104) of the lightguide (102), such that the optical sensor (114) receives at least a portion of light passing through the first portion (108) of the first major surface (104) and transmitted by the transmissive reflector (112).
    Type: Application
    Filed: September 18, 2020
    Publication date: November 16, 2023
    Inventors: Zhe Hu, Mingxing Wang, Tuhua Chen, Zhiping Liu, Yang Liu, Xiulong Men, Hailiang Hou, Huijie Xie, Yifei Zheng, Feng Zhao, Jingfei Chen, Bharat R. Acharya, Quinn D. Sanford, Matthew S. Cole, Tao Zhang
  • Publication number: 20230355821
    Abstract: Multilayer articles are provided, including an absorbent layer and an ultraviolet mirror containing at least a plurality of alternating first and second optical layers. The absorbent layer absorbs ultraviolet light having a wavelength between at least 230 nanometers (nm) and 400 nm. The ultraviolet mirror reflects ultraviolet light in a wavelength range from 190 nm to 240 nm. Systems are also provided including a broadband UVC light source and a multilayer article. Devices are provided including a chamber, a broadband UVC light source located within the chamber, an absorbent layer in the chamber, and an ultraviolet mirror between the light source and absorbent layer. Methods of disinfecting a material are further provided, including obtaining a system or device, directing UVC light at the ultraviolet mirror, and exposing the material to ultraviolet light in a wavelength range from 190 nm to 240 nm, reflected by the ultraviolet mirror towards the material.
    Type: Application
    Filed: October 12, 2021
    Publication date: November 9, 2023
    Inventors: Timothy J. Hebrink, John A. Wheatley, Bharat R. Acharya
  • Publication number: 20230356186
    Abstract: A polymer matrix composite comprising a porous polymeric network; and a plurality of functional particles distributed within the polymeric network structure, and wherein the polymer matrix composite has an air flow resistance at 25° C., as measured by the “Air Flow Resistance Test,” of less than 300 seconds/50 cm3/500 micrometers; and wherein the polymer matrix composite has a density of at least 0.3 g/cm3; and methods for making the same. The polymer matrix composites are useful, for example, as filters.
    Type: Application
    Filed: July 12, 2023
    Publication date: November 9, 2023
    Inventors: Jerald K. Rasmussen, Derek J. Dehn, Clinton P. Waller, Jr., Bharat R. Acharya, Satinder K. Nayar
  • Patent number: 11807732
    Abstract: Method of making a polymer matrix composite comprising a porous polymeric network structure; and a plurality of particles distributed within the polymeric network structure, the method comprising: combining a thermoplastic polymer, a solvent that the thermoplastic polymer is soluble in, and a plurality of particles to provide a slurry; forming the slurry in to an article; heating the article in an environment to retain at least 90 percent by weight of the solvent, based on the weight of the solvent in the slurry, and inducing phase separation of the thermoplastic polymer from the solvent to provide the polymer matrix composite.
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: November 7, 2023
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Derek J. Dehn, Clinton P. Waller, Jr., Jeanne M. Bruss, Bharat R. Acharya, Brandon A. Bartling, Michael S. Graff, Noah O. Shanti, Fabian Stolzenburg, Satinder K. Nayar
  • Publication number: 20230350107
    Abstract: A light control film includes a plurality of substantially parallel optical cavities. Each of the optical cavities has a height H along a thickness direction of the light control film and a minimum lateral dimension W along an in-plane width direction orthogonal to the thickness direction, where H?W. The optical cavities are substantially filled with a liquid including a plurality of light absorbing particles configured to move along the thickness direction in response to one or more applied signals or fields such that the movement along the thickness direction causes each of the optical cavities to transition between a substantially opaque state and a substantially transparent state. A full viewing angle of the light control film increases when the optical cavities transition from the substantially opaque state to the substantially transparent state.
    Type: Application
    Filed: April 19, 2023
    Publication date: November 2, 2023
    Inventors: Kevin W. Gotrik, Stephen J. Etzkorn, Nicholas A. Johnson, Tao Liu, John J. Sullivan, Bharat R. Acharya