Patents by Inventor Bhavik Natvar Patel

Bhavik Natvar Patel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12002204
    Abstract: Techniques are described for tailoring automatic exposure control (AEC) settings to specific patient anatomies and clinical tasks. According to an embodiment, computer-implemented method comprises receiving one or more scout images captured of an anatomical region of a patient in association with performance of a computed tomography (CT) scan. The method further comprises employing a first machine learning model to estimate, based on the one or more scout images, expected organ doses representative of expected radiation doses exposed to organs in the anatomical region under different AEC patterns for the CT scan. The method can further comprises employing a second machine learning model to estimate, based on the one or more scout images, expected measures of image quality in target and background regions of scan images captured under the different AEC patterns, and determining an optimal AEC pattern based on the expected organ doses and the expected measures of image quality.
    Type: Grant
    Filed: September 10, 2021
    Date of Patent: June 4, 2024
    Assignees: GE PRECISION HEALTHCARE LLC, THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY
    Inventors: Adam S. Wang, Debashish Pal, Abdullah-Al-Zubaer Imran, Sen Wang, Evan Zucker, Bhavik Natvar Patel
  • Publication number: 20230081601
    Abstract: Techniques are described for tailoring automatic exposure control (AEC) settings to specific patient anatomies and clinical tasks. According to an embodiment, computer-implemented method comprises receiving one or more scout images captured of an anatomical region of a patient in association with performance of a computed tomography (CT) scan. The method further comprises employing a first machine learning model to estimate, based on the one or more scout images, expected organ doses representative of expected radiation doses exposed to organs in the anatomical region under different AEC patterns for the CT scan. The method can further comprises employing a second machine learning model to estimate, based on the one or more scout images, expected measures of image quality in target and background regions of scan images captured under the different AEC patterns, and determining an optimal AEC pattern based on the expected organ doses and the expected measures of image quality.
    Type: Application
    Filed: September 10, 2021
    Publication date: March 16, 2023
    Inventors: Adam S. Wang, Debashish Pal, Abdullah-Al-Zubaer Imran, Sen Wang, Evan Zucker, Bhavik Natvar Patel
  • Publication number: 20230080631
    Abstract: Techniques are described for tailoring automatic exposure control (AEC) settings to specific patient anatomies and clinical tasks. According to an embodiment, computer-implemented method comprises receiving one or more scout images captured of an anatomical region of a patient in association with performance of a computed tomography (CT) scan. The method further comprises employing a first machine learning model to estimate, based on the one or more scout images, expected organ doses representative of expected radiation doses exposed to organs in the anatomical region under different AEC patterns for the CT scan. The method can further comprises employing a second machine learning model to estimate, based on the one or more scout images, expected measures of image quality in target and background regions of scan images captured under the different AEC patterns, and determining an optimal AEC pattern based on the expected organ doses and the expected measures of image quality.
    Type: Application
    Filed: September 10, 2021
    Publication date: March 16, 2023
    Inventors: Adam S. Wang, Debashish Pal, Abdullah-Al-Zubaer Imran, Sen Wang, Evan Zucker, Bhavik Natvar Patel