Patents by Inventor Bhavya Kailkhura

Bhavya Kailkhura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11436427
    Abstract: A generative attribute optimization (“GAO”) system facilitates understanding of effects of changes of attribute values of an object on a characteristic of the object and automatically identifying attribute values to achieve a desired result for the characteristic. The GAO system trains a generator (encoder and decoder) using an attribute generative adversarial network. The GAO model includes the trained generator and a separately trained predictor model. The GAO model inputs an input image and modified attribute values and employs the encoder and the decoder to generate a modified image that is the input image modified based on the modified attribute values. The GAO model then employs the predictor model to that inputs the modified image and generate a prediction of a characteristic of the modified image. The GAO system may employ an optimizer to modify the attribute values until an objective based on the desired result is achieved.
    Type: Grant
    Filed: March 2, 2020
    Date of Patent: September 6, 2022
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Shusen Liu, Thomas Han, Bhavya Kailkhura, Donald Loveland
  • Patent number: 11126895
    Abstract: Methods and systems are provided to generate an uncorrupted version of an image given an observed image that is a corrupted version of the image. In some embodiments, a corruption mimicking (“CM”) system iteratively trains a corruption mimicking network (“CMN”) to generate corrupted images given modeled images, updates latent vectors based on differences between the corrupted images and observed images, and applies a generator to the latent vectors to generate modeled images. The training, updating, and applying are performed until modeled images that are input to the CMN result in corrupted images that approximate the observed images. Because the CMN is trained to mimic the corruption of the observed images, the final modeled images represented the uncorrupted version of the observed images.
    Type: Grant
    Filed: April 4, 2020
    Date of Patent: September 21, 2021
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Rushil Anirudh, Peer-Timo Bremer, Jayaraman Jayaraman Thiagarajan, Bhavya Kailkhura
  • Publication number: 20210271867
    Abstract: A generative attribute optimization (“GAO”) system facilitates understanding of effects of changes of attribute values of an object on a characteristic of the object and automatically identifying attribute values to achieve a desired result for the characteristic. The GAO system trains a generator (encoder and decoder) using an attribute generative adversarial network. The GAO model includes the trained generator and a separately trained predictor model. The GAO model inputs an input image and modified attribute values and employs the encoder and the decoder to generate a modified image that is the input image modified based on the modified attribute values. The GAO model then employs the predictor model to that inputs the modified image and generate a prediction of a characteristic of the modified image. The GAO system may employ an optimizer to modify the attribute values until an objective based on the desired result is achieved.
    Type: Application
    Filed: March 2, 2020
    Publication date: September 2, 2021
    Inventors: Shusen Liu, Thomas Han, Bhavya Kailkhura, Donald Loveland
  • Publication number: 20200372308
    Abstract: Methods and systems are provided to generate an uncorrupted version of an image given an observed image that is a corrupted version of the image. In some embodiments, a corruption mimicking (“CM”) system iteratively trains a corruption mimicking network (“CMN”) to generate corrupted images given modeled images, updates latent vectors based on differences between the corrupted images and observed images, and applies a generator to the latent vectors to generate modeled images. The training, updating, and applying are performed until modeled images that are input to the CMN result in corrupted images that approximate the observed images. Because the CMN is trained to mimic the corruption of the observed images, the final modeled images represented the uncorrupted version of the observed images.
    Type: Application
    Filed: April 4, 2020
    Publication date: November 26, 2020
    Inventors: Rushil Anirudh, Peer-Timo Bremer, Jayaraman Jayaraman Thiagarajan, Bhavya Kailkhura