Patents by Inventor Bhupal Kanaiyalal Dharia

Bhupal Kanaiyalal Dharia has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11756563
    Abstract: This disclosure describes, in part, techniques for performing multi-path calculations for energy levels on an electronic device. For instance, the electronic device may include a first circuit and a second circuit, where the first circuit uses less power than the second circuit. As such, when operating in a standby mode, the electronic device may use the first circuit to calculate energy levels at the electronic device, such as speech-energy values and ambient-energy values. Additionally, while operating in an active mode, the electronic device may active the second circuit and then use the second circuit to calculate the energy levels at the electronic device. The first circuit and the second circuit can send/receive current energy levels between one another so that the electronic device can continually calculate the energy levels even when the electronic device switches between modes of operation.
    Type: Grant
    Filed: June 3, 2019
    Date of Patent: September 12, 2023
    Assignee: Amazon Technologies, Inc.
    Inventors: Bhupal Kanaiyalal Dharia, Dibyendu Nandy, Marko Bundalo, Hannan Ma
  • Patent number: 11189273
    Abstract: Apparatuses and systems for conserving power for a portable electronic device that monitors local audio for a wakeword are described herein. In a non-limiting embodiment, a portable electronic device may have two-phases. The first phase may be a first circuit that stores an audio input while determining whether human speech is present in the audio input. The second phase may be a second circuit that activates when the first circuit determines that human speech is present in the audio input. The second circuit may receive the audio input from the first circuit, store the audio input, and determine whether a wakeword is present within the audio input.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: November 30, 2021
    Assignee: Amazon Technologies, Inc.
    Inventors: Marko Bundalo, Dibyendu Nandy, Bhupal Kanaiyalal Dharia
  • Patent number: 10666077
    Abstract: Systems, methods, and computer-readable media are disclosed for remote configuration of battery charging settings. In one embodiment, an example device may include a battery, at least one memory that stores computer-executable instructions, and at least one processor. The at least one processor may be configured to access the at least one memory and execute the computer-executable instructions to determine that a charger is connected to the device, determine a first length of time that a maximum charging voltage for the battery has been set to a first voltage value, determine that the maximum charging voltage is to be reduced from the first voltage value to a second voltage value, and charge the battery at a maximum of the second voltage value.
    Type: Grant
    Filed: November 1, 2017
    Date of Patent: May 26, 2020
    Assignee: Amazon Technologies, Inc.
    Inventors: Bhupal Kanaiyalal Dharia, Feng Wang, Jianlin Chen, Xuezhang Dong
  • Patent number: 10366699
    Abstract: This disclosure describes, in part, techniques for performing multi-path calculations for energy levels on an electronic device. For instance, the electronic device may include a first circuit and a second circuit, where the first circuit uses less power than the second circuit. As such, when operating in a standby mode, the electronic device may use the first circuit to calculate energy levels at the electronic device, such as speech-energy values and ambient-energy values. Additionally, while operating in an active mode, the electronic device may active the second circuit and then use the second circuit to calculate the energy levels at the electronic device. The first circuit and the second circuit can send/receive current energy levels between one another so that the electronic device can continually calculate the energy levels even when the electronic device switches between modes of operation.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: July 30, 2019
    Assignee: Amazon Technologies, Inc.
    Inventors: Bhupal Kanaiyalal Dharia, Dibyendu Nandy, Marko Bundalo, Hannan Ma
  • Publication number: 20190005953
    Abstract: Apparatuses and systems for conserving power for a portable electronic device that monitors local audio for a wakeword are described herein. In a non-limiting embodiment, a portable electronic device may have two-phases. The first phase may be a first circuit that stores an audio input while determining whether human speech is present in the audio input. The second phase may be a second circuit that activates when the first circuit determines that human speech is present in the audio input. The second circuit may receive the audio input from the first circuit, store the audio input, and determine whether a wakeword is present within the audio input.
    Type: Application
    Filed: June 29, 2017
    Publication date: January 3, 2019
    Inventors: Marko Bundalo, Dibyendu Nandy, Bhupal Kanaiyalal Dharia
  • Patent number: 7801091
    Abstract: A communication system for communication using wireless signals in a fast macrodiversity switching environment. The wireless signals include downlink signals to and uplink signals from mobile stations where the wireless signals have bursts in time slots. In the communication system, a plurality of transceiver stations have broadcast channels (non-switched) and dedicated channels (switched) for the wireless signals. A zone manager controls the fast macrodiversity switching of bursts in dedicated channels among transceiver stations. The fast macrodiversity switching causes the bursts to have time shifts that are of a magnitude to cause unwanted burst overlap. A macro-diversity timing control controls the timing of bursts, to reduce burst overlap, in dedicated channels that have been dynamically switched timing problem.
    Type: Grant
    Filed: February 17, 2006
    Date of Patent: September 21, 2010
    Inventors: Gopal Chillariga, Bhupal Kanaiyalal Dharia, Gerhard Albert Koepf, Lance Kazumi Uyehara
  • Patent number: 7643423
    Abstract: Dynamic allocation of communication channels among communication units (CU) in a communications system. Dynamic channel allocation employs a reservation set for reserving channels and an allocation set corresponding to the reservation set for receiving allocated channels. The reservation set and the allocation set are changed dynamically as a function of network parameters to control the dynamic channel operation. Reservation set information is broadcast downlink to multiple users to reserve an allocation set of uplink radio resources for specific ones of the users. The system uses a modification of the packet data channel (PDCH) of a GPRS/EGPRS or EDGE system which employs an Uplink Status Flag (USF) on each PDCH downlink radio block. The downlink reservation set information is commonly received by all users in the group of users. Allocation delay, bandwidth efficiency and other system parameters are optimized.
    Type: Grant
    Filed: August 21, 2006
    Date of Patent: January 5, 2010
    Inventors: Gopal Chillariga, Rohit Kaushal, Bhupal Kanaiyalal Dharia, Lance Kazumi Uyehara, Gerhard Albert Koepf, Kevin Dean Raack, Ujjal Kumar Ghoshtagore
  • Patent number: 7613463
    Abstract: Fast macrodiversity switching (FMS) dynamically switches radio links used for traffic and control channels for a mobile station among a number of base transceiver stations (BTS) without changing the radio resource, that is, using the same frequency and time slot combination (TDMA) or frequency and spreading code combination (CDMA). The traffic channel switching is under control of zone managers. Each BTS includes a zone manager where a host BTS has its zone manager designated as a host zone manager and other BTSs (assistant BTSs) have their zone managers designated as assistant zone managers. The control by the host and assistant zone managers includes switching down-link signals to and up-link signals from mobile stations among base transceiver stations which include broadcast channels (non-switched) and dedicated (switched) channels. Measurements of the wireless signals are made at macrodiverse locations.
    Type: Grant
    Filed: October 3, 2008
    Date of Patent: November 3, 2009
    Inventors: Bhupal Kanaiyalal Dharia, Gopal Chillariga, Ujjal Kumar Ghoshtagore, Rohit Kaushal, Gerhard Albert Koepf, Lance Kazumi Uyehara
  • Patent number: 7551595
    Abstract: Fast macrodiversity switching (FMS) of channels that employ interleaving. The fast macrodiversity switching dynamically switches radio links used for traffic and control channels for a mobile station among a number of base transceiver stations (BTS) without switching the radio resource, using the same frequency and time slot combination (TDMA) in an environment where interleaving is occurring. The fast macrodiversity switching of channels and interleave processing is under control of an interleave manager which is distributed among zone managers. The control by the host and assistant zone managers includes switching down-link signals to and up-link signals from mobile stations among base transceiver stations which include broadcast channels (non-switched) and dedicated (switched) channels that employ interleaving. The dedicated channels are switched as frequently as a signal switch time which can be the frame rate of the up-link signals.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: June 23, 2009
    Assignee: Northstar Acquisitions, LLC
    Inventors: Bhupal Kanaiyalal Dharia, Gopal Chillariga, Ujjal Kumar Ghoshtagore, Rohit Kaushal, Gerhard Albert Koepf, Lance Kazumi Uyehara
  • Publication number: 20090029713
    Abstract: Fast macrodiversity switching (FMS) dynamically switches radio links used for traffic and control channels for a mobile station among a number of base transceiver stations (BTS) without changing the radio resource, that is, using the same frequency and time slot combination (TDMA) or frequency and spreading code combination (CDMA). The traffic channel switching is under control of zone managers. Each BTS includes a zone manager where a host BTS has its zone manager designated as a host zone manager and other BTSs (assistant BTSs) have their zone managers designated as assistant zone managers. The control by the host and assistant zone managers includes switching down-link signals to and up-link signals from mobile stations among base transceiver stations which include broadcast channels (non-switched) and dedicated (switched) channels. Measurements of the wireless signals are made at macrodiverse locations.
    Type: Application
    Filed: October 3, 2008
    Publication date: January 29, 2009
    Inventors: Bhupal Kanaiyalal Dharia, Gopal Chillariga, Ujjal Kumar Ghoshtagore, Rohit Kaushal, Gerhard Albert Koepf, Lance Kazumi Uyehara
  • Patent number: 7433683
    Abstract: Fast macrodiversity switching (FMS) dynamically switches radio links used for traffic and control channels for a mobile station among a number of base transceiver stations (BTS) without changing the radio resource, that is, using the same frequency and time slot combination (TDMA) or frequency and spreading code combination (CDMA). The traffic channel switching is under control of zone managers. Each BTS includes a zone manager where a host BTS has its zone manager designated as a host zone manager and other BTSs (assistant BTSs) have their zone managers designated as assistant zone managers. The control by the host and assistant zone managers includes switching down-link signals to and up-link signals from mobile stations among base transceiver stations which include broadcast channels (non-switched) and dedicated (switched) channels. Measurements of the wireless signals are made at macrodiverse locations.
    Type: Grant
    Filed: December 28, 2000
    Date of Patent: October 7, 2008
    Assignee: Northstar Acquisitions, LLC
    Inventors: Bhupal Kanaiyalal Dharia, Gopal Chillariga, Ujjal Kumar Ghoshtagore, Rohit Kaushal, Gerhard Albert Koepf, Lance Kazumi Uyehara
  • Patent number: 7212515
    Abstract: Fast macrodiversity switching (FMS) of channels that employ interleaving. The fast macrodiversity switching dynamically switches radio links used for traffic and control channels for a mobile station among a number of base transceiver stations (BTS) without switching the radio resource, using the same frequency and time slot combination (TDMA) in an environment where interleaving is occurring. The fast macrodiversity switching of channels and interleave processing is under control of an interleave manager which is distributed among zone managers. The control by the host and assistant zone managers includes switching down-link signals to and up-link signals from mobile stations among base transceiver stations which include broadcast channels (non-switched) and dedicated (switched) channels that employ interleaving. The dedicated channels are switched as frequently as a signal switch time which can be the frame rate of the up-link signals.
    Type: Grant
    Filed: April 17, 2001
    Date of Patent: May 1, 2007
    Inventors: Bhupal Kanaiyalal Dharia, Gopal Chillariga, Lance Kazumi Uyehara
  • Patent number: 7177298
    Abstract: Dynamic allocation of communication channels among communication units (CU) in a communications system. Dynamic channel allocation employs a reservation set for reserving channels and an allocation set corresponding to the reservation set for receiving allocated channels. The reservation set and the allocation set are changed dynamically as a function of network parameters to control the dynamic channel operation. Reservation set information is broadcast downlink to multiple users to reserve an allocation set of uplink radio resources for specific ones of the users. The system uses a modification of the packet data channel (PDCH) of a GPRS/EGPRS or EDGE system which employs an Uplink Status Flag (USF) on each PDCH downlink radio block. The downlink reservation set information is commonly received by all users in the group of users. Allocation delay, bandwidth efficiency and other system parameters are optimized.
    Type: Grant
    Filed: January 2, 2001
    Date of Patent: February 13, 2007
    Inventors: Gopal Chillariga, Rohit Kaushal, Bhupal Kanaiyalal Dharia, Lance Kazumi Uyehara, Gerhard Albert Koepf, Kevin Dean Raack, Ujjal Kumar Ghoshtagore
  • Patent number: 7020115
    Abstract: A communication system for communication using wireless signals in a fast macrodiversity switching environment. The wireless signals include downlink signals to and uplink signals from mobile stations where the wireless signals have bursts in time slots. In the communication system, a plurality of transceiver stations have broadcast channels (non-switched) and dedicated channels (switched) for the wireless signals. A zone manager controls the fast macrodiversity switching of bursts in dedicated channels among transceiver stations. The fast macrodiversity switching causes the bursts to have time shifts that are of a magnitude to cause unwanted burst overlap. A macrodiversity timing control controls the timing of bursts, to reduce burst overlap, in dedicated channels that have been dynamically switched timing problem.
    Type: Grant
    Filed: June 12, 2001
    Date of Patent: March 28, 2006
    Inventors: Gopal Chillariga, Bhupal Kanaiyalal Dharia, Gerhard Albert Koepf, Lance Kazumi Uyehara
  • Publication number: 20020123337
    Abstract: Fast macrodiversity switching (FMS) dynamically switches radio links used for traffic and control channels for a mobile station among a number of base transceiver stations (BTS) without changing the radio resource, that is, using the same frequency and time slot combination (TDMA) or frequency and spreading code combination (CDMA). The traffic channel switching is under control of zone managers. Each BTS includes a zone manager where a host BTS has its zone manager designated as a host zone manager and other BTSs (assistant BTSs) have their zone managers designated as assistant zone managers. The control by the host and assistant zone managers includes switching down-link signals to and up-link signals from mobile stations among base transceiver stations which include broadcast channels (non-switched) and dedicated (switched) channels. Measurements of the wireless signals are made at macrodiverse locations.
    Type: Application
    Filed: December 28, 2000
    Publication date: September 5, 2002
    Inventors: Bhupal Kanaiyalal Dharia, Gopal Chillariga, Ujjal Kumar Ghoshtagore, Rohit Kaushal, Gerhard Albert Koepf, Lance Kazumi Uyehara
  • Publication number: 20020122406
    Abstract: A communication system for communication using wireless signals in a fast macrodiversity switching environment. The wireless signals include downlink signals to and uplink signals from mobile stations where the wireless signals have bursts in time slots. In the communication system, a plurality of transceiver stations have broadcast channels (non-switched) and dedicated channels (switched) for the wireless signals. A zone manager controls the fast macrodiversity switching of bursts in dedicated channels among transceiver stations. The fast macrodiversity switching causes the bursts to have time shifts that are of a magnitude to cause unwanted burst overlap. A macrodiversity timing control controls the timing of bursts, to reduce burst overlap, in dedicated channels that have been dynamically switched timing problem.
    Type: Application
    Filed: June 12, 2001
    Publication date: September 5, 2002
    Inventors: Gopal Chillariga, Bhupal Kanaiyalal Dharia, Gerhard Albert Koepf, Lance Kazumi Uyehara
  • Publication number: 20020090938
    Abstract: Fast macrodiversity switching (FMS) of channels that employ interleaving. The fast macrodiversity switching dynamically switches radio links used for traffic and control channels for a mobile station among a number of base transceiver stations (BTS) without switching the radio resource, using the same frequency and time slot combination (TDMA) in an environment where interleaving is occurring. The fast macrodiversity switching of channels and interleave processing is under control of an interleave manager which is distributed among zone managers. The control by the host and assistant zone managers includes switching down-link signals to and up-link signals from mobile stations among base transceiver stations which include broadcast channels (non-switched) and dedicated (switched) channels that employ interleaving. The dedicated channels are switched as frequently as a signal switch time which can be the frame rate of the up-link signals.
    Type: Application
    Filed: April 17, 2001
    Publication date: July 11, 2002
    Inventors: Bhupal Kanaiyalal Dharia, Gopal Chilliariga, Lance Kazumi Uyehara
  • Publication number: 20010030956
    Abstract: Dynamic allocation of communication channels among communication units (CU) in a communications system. Dynamic channel allocation employs a reservation set for reserving channels and an allocation set corresponding to the reservation set for receiving allocated channels. The reservation set and the allocation set are changed dynamically as a function of network parameters to control the dynamic channel operation. Reservation set information is broadcast downlink to multiple users to reserve an allocation set of uplink radio resources for specific ones of the users. The system uses a modification of the packet data channel (PDCH) of a GPRS/EGPRS or EDGE system which employs an Uplink Status Flag (USF) on each PDCH downlink radio block. The downlink reservation set information is commonly received by all users in the group of users. Allocation delay, bandwidth efficiency and other system parameters are optimized.
    Type: Application
    Filed: January 2, 2001
    Publication date: October 18, 2001
    Inventors: Gopal Chillariga, Rohit Kaushal, Bhupal Kanaiyalal Dharia, Lance Kazumi Uyehara, Gerhard Albert Koepf, Kevin Dean Raack, Ujjal Kumar Ghoshtagore