Patents by Inventor Bhushan N. ZOPE

Bhushan N. ZOPE has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10269633
    Abstract: Methods for depositing a contact metal layer in contact structures of a semiconductor device are provided. In one embodiment, a method for depositing a contact metal layer for forming a contact structure in a semiconductor device is provided. The method comprises performing a cyclic metal deposition process to deposit a contact metal layer on a substrate and annealing the contact metal layer disposed on the substrate. The cyclic metal deposition process comprises exposing the substrate to a deposition precursor gas mixture to deposit a portion of the contact metal layer on the substrate, exposing the portion of the contact metal layer to a plasma treatment process, and repeating the exposing the substrate to a deposition precursor gas mixture and exposing the portion of the contact metal layer to a plasma treatment process until a predetermined thickness of the contact metal layer is achieved.
    Type: Grant
    Filed: November 13, 2017
    Date of Patent: April 23, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Bhushan N. Zope, Avgerinos V. Gelatos, Bo Zheng, Yu Lei, Xinyu Fu, Srinivas Gandikota, Sang-Ho Yu, Mathew Abraham
  • Patent number: 10199230
    Abstract: Methods for selectively depositing a metal silicide layer are provided herein.
    Type: Grant
    Filed: July 2, 2015
    Date of Patent: February 5, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Seshadri Ganguli, Yixiong Yang, Bhushan N. Zope, Xinyu Fu, Avgerinos V. Gelatos, Guoqiang Jian, Bo Zheng
  • Patent number: 10163656
    Abstract: Embodiments of methods for etching cobalt metal using fluorine radicals are provided herein. In some embodiments, a method of etching a cobalt layer in a substrate processing chamber includes: forming a plasma from a process gas comprising a fluorine-containing gas; and exposing the cobalt layer to fluorine radicals from the plasma while maintaining the cobalt layer at a temperature of about 50 to about 500 degrees Celsius to etch the cobalt layer.
    Type: Grant
    Filed: October 22, 2014
    Date of Patent: December 25, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Bhushan N. Zope, Avgerinos V. Gelatos
  • Publication number: 20180068890
    Abstract: Methods for depositing a contact metal layer in contact structures of a semiconductor device are provided. In one embodiment, a method for depositing a contact metal layer for forming a contact structure in a semiconductor device is provided. The method comprises performing a cyclic metal deposition process to deposit a contact metal layer on a substrate and annealing the contact metal layer disposed on the substrate. The cyclic metal deposition process comprises exposing the substrate to a deposition precursor gas mixture to deposit a portion of the contact metal layer on the substrate, exposing the portion of the contact metal layer to a plasma treatment process, and repeating the exposing the substrate to a deposition precursor gas mixture and exposing the portion of the contact metal layer to a plasma treatment process until a predetermined thickness of the contact metal layer is achieved.
    Type: Application
    Filed: November 13, 2017
    Publication date: March 8, 2018
    Inventors: Bhushan N. ZOPE, Avgerinos V. GELATOS, Bo ZHENG, Yu LEI, Xinyu FU, Srinivas GANDIKOTA, Sang-Ho YU, Mathew ABRAHAM
  • Patent number: 9842769
    Abstract: Methods for depositing a contact metal layer in contact structures of a semiconductor device are provided. In one embodiment, a method for depositing a contact metal layer for forming a contact structure in a semiconductor device is provided. The method comprises performing a cyclic metal deposition process to deposit a contact metal layer on a substrate and annealing the contact metal layer disposed on the substrate. The cyclic metal deposition process comprises exposing the substrate to a deposition precursor gas mixture to deposit a portion of the contact metal layer on the substrate, exposing the portion of the contact metal layer to a plasma treatment process, and repeating the exposing the substrate to a deposition precursor gas mixture and exposing the portion of the contact metal layer to a plasma treatment process until a predetermined thickness of the contact metal layer is achieved.
    Type: Grant
    Filed: May 3, 2016
    Date of Patent: December 12, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Bhushan N. Zope, Avgerinos V. Gelatos, Bo Zheng, Yu Lei, Xinyu Fu, Srinivas Gandikota, Sang-ho Yu, Mathew Abraham
  • Patent number: 9685371
    Abstract: Methods for depositing a metal layer in a feature definition of a semiconductor device are provided. In one implementation, a method for depositing a metal layer for forming a semiconductor device is provided. The method comprises performing a cyclic metal deposition process to deposit a metal layer on a substrate and annealing the metal layer disposed on the substrate. The cyclic metal deposition process comprises exposing the substrate to a deposition precursor gas mixture to deposit a portion of the metal layer on the substrate, exposing the portion of the metal layer to either a plasma treatment process or hydrogen annealing process and repeating the exposing the substrate to a deposition precursor gas mixture and exposing the portion of the metal layer to either a plasma treatment process or hydrogen annealing process until a predetermined thickness of the metal layer is achieved.
    Type: Grant
    Filed: September 10, 2014
    Date of Patent: June 20, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Bhushan N. Zope, Avgerinos V. Gelatos, Bo Zheng, Yu Lei, Xinyu Fu, Srinivas Gandikota, Sang Ho Yu, Mathew Abraham
  • Patent number: 9637819
    Abstract: Methods for depositing cobalt in features of a substrate include providing a substrate to a process chamber, the substrate having a first surface, a feature formed in the first surface comprising an opening defined by one or more sidewalls, a bottom surface, and upper corners, and the substrate having a first layer formed atop the first surface and the opening, wherein a thickness of the first layer is greater proximate the upper corners of the opening than at the sidewalls and bottom of the opening; exposing the substrate to a plasma formed from a silicon-containing gas to deposit a silicon layer predominantly onto a portion of the first layer atop the first surface of the substrate; and depositing a cobalt layer atop the substrate to fill the opening, wherein the silicon layer inhibits deposition of cobalt on the portion of the first layer atop the first surface of the substrate.
    Type: Grant
    Filed: November 17, 2014
    Date of Patent: May 2, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Bhushan N. Zope, Avgerinos V. Gelatos
  • Publication number: 20170084486
    Abstract: Methods for depositing a metal layer in a feature definition of a semiconductor device are provided. In one implementation, a method for depositing a metal layer for forming a semiconductor device is provided. The method comprises performing a cyclic metal deposition process to deposit a metal layer on a substrate and annealing the metal layer disposed on the substrate. The cyclic metal deposition process comprises exposing the substrate to a deposition precursor gas mixture to deposit a portion of the metal layer on the substrate, exposing the portion of the metal layer to either a plasma treatment process or hydrogen annealing process and repeating the exposing the substrate to a deposition precursor gas mixture and exposing the portion of the metal layer to either a plasma treatment process or hydrogen annealing process until a predetermined thickness of the metal layer is achieved.
    Type: Application
    Filed: November 30, 2016
    Publication date: March 23, 2017
    Inventors: Bhushan N. ZOPE, Avgerinos V. GELATOS, Bo ZHENG, Yu LEI, Xinyu FU, Srinivas GANDIKOTA, Sang Ho YU, Mathew ABRAHAM
  • Patent number: 9528183
    Abstract: Implementations described herein generally relate to methods and apparatus for in-situ removal of unwanted deposition buildup from one or more interior surfaces of a semiconductor substrate processing chamber. In one implementation, a method for removing cobalt or cobalt containing deposits from one or more interior surfaces of a substrate processing chamber after processing a substrate disposed in the substrate processing chamber is provided. The method comprises forming a reactive species from the fluorine containing cleaning gas mixture, permitting the reactive species to react with the cobalt and/or the cobalt containing deposits to form cobalt fluoride in a gaseous state and purging the cobalt fluoride in gaseous state out of the substrate processing chamber.
    Type: Grant
    Filed: April 17, 2014
    Date of Patent: December 27, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Kai Wu, Bo Zheng, Sang Ho Yu, Avgerinos V. Gelatos, Bhushan N. Zope, Jeffrey Anthis, Benjamin Schmiege
  • Publication number: 20160322229
    Abstract: Methods for selectively depositing a metal silicide layer are provided herein.
    Type: Application
    Filed: July 2, 2015
    Publication date: November 3, 2016
    Inventors: Seshadri GANGULI, Yixiong YANG, Bhushan N. ZOPE, Xinyu FU, Avgerinos V. GELATOS, Guoqiang JIAN, Bo ZHENG
  • Publication number: 20160247718
    Abstract: Methods for depositing a contact metal layer in contact structures of a semiconductor device are provided. In one embodiment, a method for depositing a contact metal layer for forming a contact structure in a semiconductor device is provided. The method comprises performing a cyclic metal deposition process to deposit a contact metal layer on a substrate and annealing the contact metal layer disposed on the substrate. The cyclic metal deposition process comprises exposing the substrate to a deposition precursor gas mixture to deposit a portion of the contact metal layer on the substrate, exposing the portion of the contact metal layer to a plasma treatment process, and repeating the exposing the substrate to a deposition precursor gas mixture and exposing the portion of the contact metal layer to a plasma treatment process until a predetermined thickness of the contact metal layer is achieved.
    Type: Application
    Filed: May 3, 2016
    Publication date: August 25, 2016
    Inventors: Bhushan N. ZOPE, Avgerinos V. GELATOS, Bo ZHENG, Yu LEI, Xinyu FU, Srinivas GANDIKOTA, Sang-ho YU, Mathew ABRAHAM
  • Patent number: 9378941
    Abstract: An electron beam plasma source is used in a soft plasma surface treatment of semiconductor surfaces containing Ge or group III-V compound semiconductor materials.
    Type: Grant
    Filed: October 28, 2013
    Date of Patent: June 28, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Aneesh Nainani, Bhushan N. Zope, Leonid Dorf, Shahid Rauf, Adam Brand, Mathew Abraham, Subhash Deshmukh
  • Patent number: 9330939
    Abstract: Methods for depositing a contact metal layer in contact structures of a semiconductor device are provided. In one embodiment, a method for depositing a contact metal layer for forming a contact structure in a semiconductor device is provided. The method comprises performing a cyclic metal deposition process to deposit a contact metal layer on a substrate and annealing the contact metal layer disposed on the substrate. The cyclic metal deposition process comprises exposing the substrate to a deposition precursor gas mixture to deposit a portion of the contact metal layer on the substrate, exposing the portion of the contact metal layer to a plasma treatment process, and repeating the exposing the substrate to a deposition precursor gas mixture and exposing the portion of the contact metal layer to a plasma treatment process until a predetermined thickness of the contact metal layer is achieved.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: May 3, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Bhushan N. Zope, Avgerinos V. Gelatos, Bo Zheng, Yu Lei, Xinyu Fu, Srinivas Gandikota, Sang-Ho Yu, Mathew Abraham
  • Publication number: 20160104639
    Abstract: Embodiments of the present invention generally relate to a method of forming a cobalt layer on a dielectric material without incubation delay. Prior to depositing the cobalt layer using CVD, the surface of the dielectric material is pretreated at a temperature between 100° C. and 250° C. Since the subsequent CVD cobalt process is also performed at between 100° C. and 250° C., one processing chamber is used for pretreating the dielectric material and forming of the cobalt layer. The combination of processing steps enables use of two processing chambers to deposit cobalt.
    Type: Application
    Filed: December 21, 2015
    Publication date: April 14, 2016
    Inventors: Bhushan N. Zope, Avgerinos V. Gelatos
  • Patent number: 9218980
    Abstract: Embodiments of the present invention generally relate to a method of forming a cobalt layer on a dielectric material without incubation delay. Prior to depositing the cobalt layer using CVD, the surface of the dielectric material is pretreated at a temperature between 100° C. and 250° C. Since the subsequent CVD cobalt process is also performed at between 100° C. and 250° C., one processing chamber is used for pretreating the dielectric material and forming of the cobalt layer. The combination of processing steps enables use of two processing chambers to deposit cobalt.
    Type: Grant
    Filed: September 13, 2013
    Date of Patent: December 22, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Bhushan N. Zope, Avgerinos V. Gelatos
  • Publication number: 20150140233
    Abstract: Methods for depositing cobalt in features of a substrate include providing a substrate to a process chamber, the substrate having a first surface, a feature formed in the first surface comprising an opening defined by one or more sidewalls, a bottom surface, and upper corners, and the substrate having a first layer formed atop the first surface and the opening, wherein a thickness of the first layer is greater proximate the upper corners of the opening than at the sidewalls and bottom of the opening; exposing the substrate to a plasma formed from a silicon-containing gas to deposit a silicon layer predominantly onto a portion of the first layer atop the first surface of the substrate; and depositing a cobalt layer atop the substrate to fill the opening, wherein the silicon layer inhibits deposition of cobalt on the portion of the first layer atop the first surface of the substrate.
    Type: Application
    Filed: November 17, 2014
    Publication date: May 21, 2015
    Inventors: BHUSHAN N. ZOPE, AVGERINOS V. GELATOS
  • Publication number: 20150140812
    Abstract: Embodiments of methods for etching cobalt metal using fluorine radicals are provided herein. In some embodiments, a method of etching a cobalt layer in a substrate processing chamber includes: forming a plasma from a process gas comprising a fluorine-containing gas; and exposing the cobalt layer to fluorine radicals from the plasma while maintaining the cobalt layer at a temperature of about 50 to about 500 degrees Celsius to etch the cobalt layer.
    Type: Application
    Filed: October 22, 2014
    Publication date: May 21, 2015
    Inventors: BHUSHAN N. ZOPE, AVGERINOS V. GELATOS
  • Publication number: 20150093891
    Abstract: Methods for depositing a metal layer in a feature definition of a semiconductor device are provided. In one implementation, a method for depositing a metal layer for forming a semiconductor device is provided. The method comprises performing a cyclic metal deposition process to deposit a metal layer on a substrate and annealing the metal layer disposed on the substrate. The cyclic metal deposition process comprises exposing the substrate to a deposition precursor gas mixture to deposit a portion of the metal layer on the substrate, exposing the portion of the metal layer to either a plasma treatment process or hydrogen annealing process and repeating the exposing the substrate to a deposition precursor gas mixture and exposing the portion of the metal layer to either a plasma treatment process or hydrogen annealing process until a predetermined thickness of the metal layer is achieved.
    Type: Application
    Filed: September 10, 2014
    Publication date: April 2, 2015
    Inventors: Bhushan N. ZOPE, Avgerinos V. GELATOS, Bo ZHENG, Yu LEI, Xinyu FU, Srinivas GANDIKOTA, Sang Ho YU, Mathew ABRAHAM
  • Publication number: 20150093862
    Abstract: An electron beam plasma source is used in a soft plasma surface treatment of semiconductor surfaces containing Ge or group III-V compound semiconductor materials.
    Type: Application
    Filed: October 28, 2013
    Publication date: April 2, 2015
    Applicant: APPLIED MATEIRALS, INC.
    Inventors: Aneesh Nainani, Bhushan N. Zope, Leonid Dorf, Shahid Rauf, Adam Brand, Mathew Abraham, Subhash Deshmukh
  • Publication number: 20150079784
    Abstract: Embodiments of the present invention generally relate to a method of forming a cobalt layer on a dielectric material without incubation delay. Prior to depositing the cobalt layer using CVD, the surface of the dielectric material is pretreated at a temperature between 100° C. and 250° C. Since the subsequent CVD cobalt process is also performed at between 100° C. and 250° C., one processing chamber is used for pretreating the dielectric material and forming of the cobalt layer. The combination of processing steps enables use of two processing chambers to deposit cobalt.
    Type: Application
    Filed: September 13, 2013
    Publication date: March 19, 2015
    Applicant: Applied Materials, Inc.
    Inventors: Bhushan N. ZOPE, Avgerinos V. GELATOS