Patents by Inventor Bhushan Zope

Bhushan Zope has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11946136
    Abstract: A semiconductor processing device is disclosed. The device can include a reactor and a solid source vessel configured to supply a vaporized solid reactant to the reactor. A process control chamber can be disposed between the solid source vessel and the reactor. The device can include a valve upstream of the process control chamber. A control system can be configured to control operation of the valve based at least in part on feedback of measured pressure in the process control chamber.
    Type: Grant
    Filed: September 8, 2020
    Date of Patent: April 2, 2024
    Assignee: ASM IP Holding B.V.
    Inventors: Jereld Lee Winkler, Eric James Shero, Carl Louis White, Shankar Swaminathan, Bhushan Zope
  • Publication number: 20240068092
    Abstract: Methods for depositing a molybdenum nitride film on a surface of a substrate are disclosed. The methods may include: providing a substrate into a reaction chamber; and depositing a molybdenum nitride film directly on the surface of the substrate by performing one or more unit deposition cycles of cyclical deposition process, wherein a unit deposition cycle may include, contacting the substrate with a first vapor phase reactant comprising a molybdenum halide precursor, and contacting the substrate with a second vapor phase reactant comprising a nitrogen precursor. Semiconductor device structures including a molybdenum nitride film are also disclosed.
    Type: Application
    Filed: November 8, 2023
    Publication date: February 29, 2024
    Inventors: Eric Christopher Stevens, Bhushan Zope, Shankar Swaminathan, Charles Dezelah, Qi Xie, Giuseppe Alessio Verni
  • Patent number: 11908736
    Abstract: Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process are disclosed. The methods may include: providing a substrate comprising a dielectric surface into a reaction chamber; depositing a nucleation film directly on the dielectric surface; and depositing a molybdenum metal film directly on the nucleation film, wherein depositing the molybdenum metal film includes: contacting the substrate with a first vapor phase reactant comprising a molybdenum halide precursor; and contacting the substrate with a second vapor phase reactant comprising a reducing agent precursor. Semiconductor device structures including a molybdenum metal film disposed over a surface of a dielectric material with an intermediate nucleation film are also disclosed.
    Type: Grant
    Filed: March 22, 2022
    Date of Patent: February 20, 2024
    Assignee: ASM IP Holding B.V.
    Inventors: Bhushan Zope, Kiran Shrestha, Shankar Swaminathan, Chiyu Zhu, Henri Jussila, Qi Xie
  • Patent number: 11898242
    Abstract: Methods for forming a polycrystalline molybdenum film over a surface of a substrate are disclosed. The methods may include: providing a substrate into a reaction chamber; depositing a nucleation film directly on an exposed surface of the substrate, wherein the nucleation film comprises one of a metal oxide nucleation film or a metal nitride nucleation film; and depositing a polycrystalline molybdenum film directly on the nucleation film; wherein the polycrystalline molybdenum film comprises a plurality of molybdenum crystallites having an average crystallite size of less than 80 ?. Structures including a polycrystalline molybdenum film disposed over a surface of a substrate with an intermediate nucleation film are also disclosed.
    Type: Grant
    Filed: August 14, 2020
    Date of Patent: February 13, 2024
    Inventors: Bhushan Zope, Eric Christopher Stevens, Shankar Swaminathan, Roghayyeh Lotfi, Mustafa Muhammad, Eric Shero
  • Publication number: 20230416911
    Abstract: A thermal atomic layer deposition method for selectively deposition of silicon and oxygen containing dielectric film selected from silicon oxide or carbon doped silicon oxide abundantly on a dielectric surface but not less on a metal surface employing a silicon precursor having at least three isocyanato ligands.
    Type: Application
    Filed: November 15, 2021
    Publication date: December 28, 2023
    Inventors: RAVINDRA KANJOLIA, GUO LIU, MARK POTYEN, JACOB WOODRUFF, BHUSHAN ZOPE, XINJIAN LEI
  • Patent number: 11827978
    Abstract: Methods for depositing a molybdenum nitride film on a surface of a substrate are disclosed. The methods may include: providing a substrate into a reaction chamber; and depositing a molybdenum nitride film directly on the surface of the substrate by performing one or more unit deposition cycles of cyclical deposition process, wherein a unit deposition cycle may include, contacting the substrate with a first vapor phase reactant comprising a molybdenum halide precursor, and contacting the substrate with a second vapor phase reactant comprising a nitrogen precursor. Semiconductor device structures including a molybdenum nitride film are also disclosed.
    Type: Grant
    Filed: March 7, 2022
    Date of Patent: November 28, 2023
    Assignee: ASM IP Holding B.V.
    Inventors: Eric Christopher Stevens, Bhushan Zope, Shankar Swaminathan, Charles Dezelah, Qi Xie, Giuseppe Alessio Verni
  • Patent number: 11581220
    Abstract: Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process are disclosed. The methods may include: providing a substrate comprising a dielectric surface into a reaction chamber; depositing a nucleation film directly on the dielectric surface; and depositing a molybdenum metal film directly on the nucleation film, wherein depositing the molybdenum metal film includes: contacting the substrate with a first vapor phase reactant comprising a molybdenum halide precursor; and contacting the substrate with a second vapor phase reactant comprising a reducing agent precursor. Semiconductor device structures including a molybdenum metal film disposed over a surface of a dielectric material with an intermediate nucleation film are also disclosed.
    Type: Grant
    Filed: January 18, 2021
    Date of Patent: February 14, 2023
    Assignee: ASM IP Holding B.V.
    Inventors: Bhushan Zope, Kiran Shrestha, Shankar Swaminathan, Chiyu Zhu, Henri Tuomas Antero Jussila, Qi Xie
  • Publication number: 20220380895
    Abstract: A workpiece susceptor body can include a front face configured to support a workpiece, a back face opposite the front face, a workpiece contact zone at least partially forming a support boundary on an inner portion of the front face, and a plurality of axial channels disposed within the susceptor body. The workpiece contact zone can be disposed radially inward of an outer edge of a workpiece positioned on the front face in a processing configuration. Each of the plurality of axial channels may connect to corresponding openings extending into an outer portion of the front face. Each of the openings may be disposed radially outward of the workpiece contact zone of the susceptor body.
    Type: Application
    Filed: July 29, 2022
    Publication date: December 1, 2022
    Inventors: Raj Singu, Todd Robert Dunn, Carl Louis White, Herbert Terhorst, Eric James Shero, Bhushan Zope
  • Patent number: 11404302
    Abstract: A workpiece susceptor body can include a front face configured to support a workpiece, a back face opposite the front face, a workpiece contact zone at least partially forming a support boundary on an inner portion of the front face, and a plurality of axial channels disposed within the susceptor body. The workpiece contact zone can be disposed radially inward of an outer edge of a workpiece positioned on the front face in a processing configuration. Each of the plurality of axial channels may connect to corresponding openings extending into an outer portion of the front face. Each of the openings may be disposed radially outward of the workpiece contact zone of the susceptor body.
    Type: Grant
    Filed: May 15, 2020
    Date of Patent: August 2, 2022
    Assignee: ASM IP HOLDING B.V.
    Inventors: Raj Singu, Todd Robert Dunn, Carl Louis White, Herbert Terhorst, Eric James Shero, Bhushan Zope
  • Publication number: 20220216105
    Abstract: Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process are disclosed. The methods may include: providing a substrate comprising a dielectric surface into a reaction chamber; depositing a nucleation film directly on the dielectric surface; and depositing a molybdenum metal film directly on the nucleation film, wherein depositing the molybdenum metal film includes: contacting the substrate with a first vapor phase reactant comprising a molybdenum halide precursor; and contacting the substrate with a second vapor phase reactant comprising a reducing agent precursor. Semiconductor device structures including a molybdenum metal film disposed over a surface of a dielectric material with an intermediate nucleation film are also disclosed.
    Type: Application
    Filed: March 22, 2022
    Publication date: July 7, 2022
    Inventors: Bhushan Zope, Kiran Shrestha, Shankar Swaminathan, Chiyu Zhu, Henri Jussila, Qi Xie
  • Publication number: 20220186364
    Abstract: Methods for depositing a molybdenum nitride film on a surface of a substrate are disclosed. The methods may include: providing a substrate into a reaction chamber; and depositing a molybdenum nitride film directly on the surface of the substrate by performing one or more unit deposition cycles of cyclical deposition process, wherein a unit deposition cycle may include, contacting the substrate with a first vapor phase reactant comprising a molybdenum halide precursor, and contacting the substrate with a second vapor phase reactant comprising a nitrogen precursor. Semiconductor device structures including a molybdenum nitride film are also disclosed.
    Type: Application
    Filed: March 7, 2022
    Publication date: June 16, 2022
    Inventors: Eric Christopher Stevens, Bhushan Zope, Shankar Swaminathan, Charles Dezelah, Qi Xie, Giuseppe Alessio Verni
  • Patent number: 11295980
    Abstract: Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process are disclosed. The methods may include: providing a substrate comprising a dielectric surface into a reaction chamber; depositing a nucleation film directly on the dielectric surface; and depositing a molybdenum metal film directly on the nucleation film, wherein depositing the molybdenum metal film includes: contacting the substrate with a first vapor phase reactant comprising a molybdenum halide precursor; and contacting the substrate with a second vapor phase reactant comprising a reducing agent precursor. Semiconductor device structures including a molybdenum metal film disposed over a surface of a dielectric material with an intermediate nucleation film are also disclosed.
    Type: Grant
    Filed: August 20, 2018
    Date of Patent: April 5, 2022
    Assignee: ASM IP Holding B.V.
    Inventors: Bhushan Zope, Kiran Shrestha, Shankar Swaminathan, Chiyu Zhu, Henri Tuomas Antero Jussila, Qi Xie
  • Patent number: 11286558
    Abstract: Methods for depositing a molybdenum nitride film on a surface of a substrate are disclosed. The methods may include: providing a substrate into a reaction chamber; and depositing a molybdenum nitride film directly on the surface of the substrate by performing one or more unit deposition cycles of cyclical deposition process, wherein a unit deposition cycle may include, contacting the substrate with a first vapor phase reactant comprising a molybdenum halide precursor, and contacting the substrate with a second vapor phase reactant comprising a nitrogen precursor. Semiconductor device structures including a molybdenum nitride film are also disclosed.
    Type: Grant
    Filed: August 13, 2020
    Date of Patent: March 29, 2022
    Assignee: ASM IP Holding B.V.
    Inventors: Eric Christopher Stevens, Bhushan Zope, Shankar Swaminathan, Charles Dezelah, Qi Xie, Giuseppe Alessio Verni
  • Publication number: 20210404060
    Abstract: Vapor deposition methods for depositing tungsten-containing thin films are provided. In some embodiments a substrate is contacted with a vapor phase first reactant comprising a tungsten precursor, such as a tungsten oxyhalide, a second reactant such as CO, and a third reactant such as H2. In some embodiments a substrate is contacted with a vapor phase first reactant comprising a tungsten precursor, such as a tungsten hexacarbonyl, a second reactant comprising a first oxidant, such as H2O, and a third reactant comprising a reducing agent, such as CO. In some embodiments the deposition process is an ALD process.
    Type: Application
    Filed: June 21, 2021
    Publication date: December 30, 2021
    Inventors: Robert Brennan Milligan, Eric James Shero, Shankar Swaminathan, Bhushan Zope
  • Publication number: 20210407809
    Abstract: Vapor deposition processes for forming thin films comprising molybdenum on a substrate are provide. In some embodiments the processes comprise a plurality of deposition cycles in which the substrate is separately contacted with a vapor phase molybdenum precursor comprising a molybdenum halide, a first reactant comprising CO, and a second reactant comprising H2. In some embodiments the thin film comprises MoC, Mo2C, or MoOC. In some embodiments the substrate is additionally contacted with a nitrogen reactant and a thin film comprising molybdenum, carbon and nitrogen is deposited, such as MoCN or MoOCN.
    Type: Application
    Filed: June 21, 2021
    Publication date: December 30, 2021
    Inventors: Bhushan Zope, Eric Christopher Stevens, Shankar Swaminathan, Eric James Shero, Robert Brennan Milligan
  • Publication number: 20210348271
    Abstract: An apparatus and method for cleaning or etching a molybdenum film or a molybdenum nitride film from an interior of a reaction chamber in a reaction system are disclosed. A remote plasma unit is utilized to activate a halide precursor mixed with an inert gas source to form a radical gas. The radical gas reacts with the molybdenum film or the molybdenum nitride film to form a by-product that is removed from the interior of the reaction chamber by a purge gas.
    Type: Application
    Filed: May 4, 2021
    Publication date: November 11, 2021
    Inventors: Amit Mishra, Bhushan Zope, Shankar Swaminathan, Theodorus G.M. Oosterlaken
  • Publication number: 20210210373
    Abstract: A reactor system may comprise a reaction chamber enclosed by a chamber sidewall, and a susceptor disposed in the reaction chamber between a reaction space and a lower chamber space comprised in the reaction chamber. The susceptor may comprise a pin hole disposed through the susceptor such that the pin hole is in fluid communication with the reaction space and the lower chamber space, and such that the reaction space is in fluid communication with the lower chamber space. A lift pin may be disposed in the pin hole. The lift pin may comprise a pin body comprising a pin channel, defined by a pin channel surface, disposed in the pin body such that the reaction space is in fluid communication with the lower chamber space when the lift pin is disposed in the pin hole.
    Type: Application
    Filed: January 4, 2021
    Publication date: July 8, 2021
    Inventors: Govindarajasekhar Singu, Dinkar Nandwana, Todd Robert Dunn, Shankar Swaminathan, Bhushan Zope, Carl Louis White
  • Publication number: 20210151352
    Abstract: Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process are disclosed. The methods may include: providing a substrate comprising a dielectric surface into a reaction chamber; depositing a nucleation film directly on the dielectric surface; and depositing a molybdenum metal film directly on the nucleation film, wherein depositing the molybdenum metal film includes: contacting the substrate with a first vapor phase reactant comprising a molybdenum halide precursor; and contacting the substrate with a second vapor phase reactant comprising a reducing agent precursor. Semiconductor device structures including a molybdenum metal film disposed over a surface of a dielectric material with an intermediate nucleation film are also disclosed.
    Type: Application
    Filed: January 18, 2021
    Publication date: May 20, 2021
    Inventors: Bhushan Zope, Kiran Shrestha, Shankar Swaminathan, Chiyu Zhu, Henri Tuomas Antero Jussila, Qi Xie
  • Publication number: 20210087679
    Abstract: A semiconductor processing device is disclosed. The device can include a reactor and a solid source vessel configured to supply a vaporized solid reactant to the reactor. A process control chamber can be disposed between the solid source vessel and the reactor. The device can include a valve upstream of the process control chamber. A control system can be configured to control operation of the valve based at least in part on feedback of measured pressure in the process control chamber.
    Type: Application
    Filed: September 8, 2020
    Publication date: March 25, 2021
    Inventors: Jereld Lee Winkler, Eric James Shero, Carl Louis White, Shankar Swaminathan, Bhushan Zope
  • Publication number: 20210054500
    Abstract: Methods for forming a polycrystalline molybdenum film over a surface of a substrate are disclosed. The methods may include: providing a substrate into a reaction chamber; depositing a nucleation film directly on an exposed surface of the substrate, wherein the nucleation film comprises one of a metal oxide nucleation film or a metal nitride nucleation film; and depositing a polycrystalline molybdenum film directly on the nucleation film; wherein the polycrystalline molybdenum film comprises a plurality of molybdenum crystallites having an average crystallite size of less than 80 ?. Structures including a polycrystalline molybdenum film disposed over a surface of a substrate with an intermediate nucleation film are also disclosed.
    Type: Application
    Filed: August 14, 2020
    Publication date: February 25, 2021
    Inventors: Bhushan Zope, Eric Christopher Stevens, Shankar Swaminathan, Roghayyeh Lotfi, Mustafa Muhammad, Eric Shero