Patents by Inventor Biagio De Masi

Biagio De Masi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9316550
    Abstract: A shock sensor includes: a supporting body; a bistable mechanism, configured to switch from a first stable mechanical configuration to a second stable mechanical configuration in response to an impact force applied along a detection axis and such as to supply to the bistable mechanism an amount of energy higher than a transition energy; and a detection device, coupled to the bistable mechanism and having a first state, when the bistable mechanism is in an initial stable mechanical configuration and a second state, after the bistable mechanism has made a transition from the initial stable mechanical configuration to a final stable mechanical configuration. The bistable mechanism includes at least one elastic element, constrained to the supporting body in at least two opposite peripheral regions and defining a first concavity in the first stable mechanical configuration and a second concavity, opposite to the first concavity, in the second stable mechanical configuration.
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: April 19, 2016
    Assignee: STMicroelectronics S.r.l.
    Inventors: Attilio Frangi, Biagio De Masi, Leonardo Baldasarre
  • Patent number: 9080871
    Abstract: A microelectromechanical sensor includes: a supporting structure, having at least one first electrode and one second electrode, which form a capacitor; and a sensing mass made of non-conductive material, which is arranged so as to interact with an electric field associated to the capacitor and is movable with respect to the supporting structure according to a degree of freedom so that a relative position of the sensing mass with respect to the first electrode and to the second electrode is variable in response to external stresses. The sensing mass is made of a material selected in the group consisting of: intrinsic semiconductor materials, oxides of semiconductor materials, and nitrides of semiconductor materials.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: July 14, 2015
    Assignee: STMicroelectronics S.r.l.
    Inventors: Angelo Antonio Merassi, Biagio De Masi, Alberto Corigliano
  • Patent number: 8863575
    Abstract: A micromechanical structure for a MEMS structure is provided with: a substrate; a single inertial mass having a main extension in a plane and arranged suspended above the substrate; and a frame element, elastically coupled to the inertial mass by coupling elastic elements and to anchorages, which are fixed with respect to the substrate by anchorage elastic elements. The coupling elastic elements and the anchorage elastic elements are configured so as to enable a first inertial movement of the inertial mass in response to a first external acceleration acting in a direction lying in the plane and also a second inertial movement of the inertial mass in response to a second external acceleration acting in a direction transverse to the plane.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: October 21, 2014
    Assignee: STMicroelectronics S.R.L.
    Inventors: Attilio Frangi, Biagio De Masi, Barbara Simoni
  • Publication number: 20140033964
    Abstract: A shock sensor includes: a supporting body; a bistable mechanism, configured to switch from a first stable mechanical configuration to a second stable mechanical configuration in response to an impact force applied along a detection axis and such as to supply to the bistable mechanism an amount of energy higher than a transition energy; and a detection device, coupled to the bistable mechanism and having a first state, when the bistable mechanism is in an initial stable mechanical configuration and a second state, after the bistable mechanism has made a transition from the initial stable mechanical configuration to a final stable mechanical configuration. The bistable mechanism includes at least one elastic element, constrained to the supporting body in at least two opposite peripheral regions and defining a first concavity in the first stable mechanical configuration and a second concavity, opposite to the first concavity, in the second stable mechanical configuration.
    Type: Application
    Filed: August 1, 2013
    Publication date: February 6, 2014
    Inventors: Attilio Frangi, Biagio De Masi, Leonardo Baldasarre
  • Publication number: 20130081466
    Abstract: A microelectromechanical sensor includes: a supporting structure, having at least one first electrode and one second electrode, which form a capacitor; and a sensing mass made of non-conductive material, which is arranged so as to interact with an electric field associated to the capacitor and is movable with respect to the supporting structure according to a degree of freedom so that a relative position of the sensing mass with respect to the first electrode and to the second electrode is variable in response to external stresses. The sensing mass is made of a material selected in the group consisting of: intrinsic semiconductor materials, oxides of semiconductor materials, and nitrides of semiconductor materials.
    Type: Application
    Filed: September 12, 2012
    Publication date: April 4, 2013
    Applicants: POLITECNICO DI MILANO, STMICROELECTRONICS S.R.L.
    Inventors: Angelo Antonio Merassi, Biagio De Masi, Alberto Corigliano
  • Publication number: 20120000287
    Abstract: A micromechanical structure for a MEMS three-axis capacitive accelerometer is provided with: a substrate; a single inertial mass having a main extension in a plane and arranged suspended above the substrate; and a frame element, elastically coupled to the inertial mass by coupling elastic elements and to anchorages, which are fixed with respect to the substrate by anchorage elastic elements. The coupling elastic elements and the anchorage elastic elements are configured so as to enable a first inertial movement of the inertial mass in response to a first external acceleration acting in a direction lying in the plane and also a second inertial movement of the inertial mass in response to a second external acceleration acting in a direction transverse to the plane.
    Type: Application
    Filed: June 15, 2011
    Publication date: January 5, 2012
    Applicant: STMICROELECTRONICS S.R.L.
    Inventors: Attilio Frangi, Biagio De Masi, Barbara Simoni
  • Patent number: 7678599
    Abstract: A process for the fabrication of an inertial sensor with failure threshold includes the step of forming, on top of a substrate of a semiconductor wafer, a sample element embedded in a sacrificial region, the sample element configured to break under a preselected strain. The process further includes forming, on top of the sacrificial region, a body connected to the sample element and etching the sacrificial region so as to free the body and the sample element. The process may also include forming, on the substrate, additional sample elements connected to the body.
    Type: Grant
    Filed: December 4, 2006
    Date of Patent: March 16, 2010
    Assignees: STMicroelectronics S.r.l., Nokia Corporation
    Inventors: Sarah Zerbini, Angelo Merassi, Guido Spinola Durante, Biagio De Masi
  • Publication number: 20070175865
    Abstract: A process for the fabrication of an inertial sensor with failure threshold includes the step of forming, on top of a substrate of a semiconductor wafer, a sample element embedded in a sacrificial region, the sample element configured to break under a preselected strain. The process further includes forming, on top of the sacrificial region, a body connected to the sample element and etching the sacrificial region so as to free the body and the sample element. The process may also include forming, on the substrate, additional sample elements connected to the body.
    Type: Application
    Filed: December 4, 2006
    Publication date: August 2, 2007
    Applicants: STMicroelectronics S.r.l., Nokia Corporation
    Inventors: Sarah Zerbini, Angelo Merassi, Guido Spinola Durante, Biagio De Masi
  • Patent number: 6858810
    Abstract: An inertial sensor with failure threshold includes a first body and a second body, which can move relative to one another and are constrained by a plurality of elastic elements, and a sample element connected between the first body and the second body and shaped so as to be subjected to a stress when the second body is outside of a relative resting position with respect to the first body. The sample element has at least one weakened region. The sensor may also include additional sample elements connected between the first and second bodies.
    Type: Grant
    Filed: August 27, 2003
    Date of Patent: February 22, 2005
    Assignees: STMicroelectronics S.r.l., Nokia Corporation
    Inventors: Sarah Zerbini, Angelo Merassi, Guido Spinola Durante, Biagio De Masi
  • Publication number: 20040129989
    Abstract: An inertial sensor with failure threshold includes a first body and a second body, which can move relative to one another and are constrained by a plurality of elastic elements, and a sample element connected between the first body and the second body and shaped so as to be subjected to a stress when the second body is outside of a relative resting position with respect to the first body. The sample element has at least one weakened region. The sensor may also include additional sample elements connected between the first and second bodies.
    Type: Application
    Filed: August 27, 2003
    Publication date: July 8, 2004
    Applicants: STMicroelectronics S.r.I., Nokia Corporation
    Inventors: Sarah Zerbini, Angelo Merassi, Guido Spinola Durante, Biagio De Masi
  • Publication number: 20040121504
    Abstract: A process for the fabrication of an inertial sensor with failure threshold includes the step of forming, on top of a substrate of a semiconductor wafer, a sample element embedded in a sacrificial region, the sample element configured to break under a preselected strain. The process further includes forming, on top of the sacrificial region, a body connected to the sample element and etching the sacrificial region so as to free the body and the sample element. The process may also include forming, on the substrate, additional sample elements connected to the body.
    Type: Application
    Filed: August 27, 2003
    Publication date: June 24, 2004
    Applicants: STMicroelectronics S.r.l., Nokia Corporation
    Inventors: Sarah Zerbini, Angelo Merassi, Guido Spinola Durante, Biagio De Masi