Patents by Inventor Bikash K. Sinha

Bikash K. Sinha has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210389487
    Abstract: A method for determining a shear slowness of a subterranean formation includes receiving waveforms data acquired by receivers in an acoustic measurement tool in response to energy emitted by at least one dipole source. The waveforms are processed to extract a formation flexural acoustic mode and a tool flexural acoustic mode. The processing includes transforming the time domain waveforms to frequency domain waveforms, processing the frequency domain waveforms with a Capon algorithm to compute a two-dimensional spectrum over a chosen range of group slowness and phase slowness values; and processing the two-dimensional spectrum to extract the multi-mode slowness dispersion.
    Type: Application
    Filed: August 26, 2021
    Publication date: December 16, 2021
    Inventors: Pu Wang, Sandip Bose, Bikash K. Sinha
  • Patent number: 11131182
    Abstract: Methods are provided for estimating a quality of cement in the annuli of a multi-string wellbore. Wideband acoustic energy signals are generated and detected in the wellbore and are processed to obtain indications of wideband casing-formation phase slowness dispersions in the wellbore. The indications are compared to reference wideband model casing-formation phase slowness dispersions in order to estimate status of cement or lack of cement in the annuli at that location based on the results of the comparison.
    Type: Grant
    Filed: March 27, 2018
    Date of Patent: September 28, 2021
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Yang Liu, Bikash K. Sinha, Smaine Zeroug
  • Publication number: 20200072040
    Abstract: Methods are provided for estimating a quality of cement in the annuli of a multi-string wellbore. Wideband acoustic energy signals are generated and detected in the wellbore and are processed to obtain indications of wideband casing-formation phase slowness dispersions in the wellbore. The indications are compared to reference wideband model casing-formation phase slowness dispersions in order to estimate status of cement or lack of cement in the annuli at that location based on the results of the comparison.
    Type: Application
    Filed: March 27, 2018
    Publication date: March 5, 2020
    Inventors: Yang Liu, Bikash K. Sinha, Smaine Zeroug
  • Patent number: 10577915
    Abstract: Methods are disclosed for detecting fluid in at least one annulus around at least one casing installed in a borehole traversing a formation utilizing a sonic tool. The sonic tool is activated in the borehole and the received sonic waveforms are processed to obtain a dispersion plot. A reference dispersion plot is generated using a model of the borehole where the casing is well-bonded by cement. The obtained and reference dispersion plots are compared. An indication of fluid and in some cases, the specific radial location thereof is obtained based on the signature of the obtained plot as opposed to the reference plot. The methods are effective in doubly-cased boreholes using monopole and/or dipole sources.
    Type: Grant
    Filed: January 16, 2014
    Date of Patent: March 3, 2020
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Bikash K. Sinha, Ting Lei, Smaine Zeroug
  • Patent number: 10393905
    Abstract: A method for torsional wave logging in a borehole of a subterranean formation. The method includes obtaining a torsional wave measurement of the borehole, wherein the torsional wave measurement represents characteristics of a torsional wave propagating within a cylindrical layered structure associated with the borehole, wherein the cylindrical layered structure comprises the subterranean formation and a completion of the borehole, analyzing, by a computer processor, the torsional wave measurement to generate a quality measure of the completion, and displaying the quality measure of the completion.
    Type: Grant
    Filed: August 16, 2016
    Date of Patent: August 27, 2019
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Bikash K. Sinha, Sandip Bose, Jiaqi Yang, Ting Lei, Tarek M. Habashy, Smaine Zeroug, Ma Luo
  • Patent number: 10365405
    Abstract: A computer-implemented method is provided for determining properties of a formation traversed by a well or wellbore. A formation model describing formation properties at an interval-of-interest within the well or wellbore is derived from measured sonic data, resistivity data, and density data for the interval-of-interest. The formation model is used as input to a plurality of petrophysical transforms and corresponding tool response simulators that derive simulated sonic data, resistivity data, and density data for the interval-of-interest. The measured sonic data, resistivity data, and density data for the interval-of-interest and the simulated sonic data, resistivity data, and density data for the interval-of-interest are used by an inversion process to refine the formation model and determine properties of the formation at the interval-of-interest. In embodiments, properties of the formation may be radial profiles for porosity, water saturation, gas or oil saturation, or pore aspect ratio.
    Type: Grant
    Filed: January 25, 2016
    Date of Patent: July 30, 2019
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Sushil Shetty, Lin Liang, Tarek M. Habashy, Vanessa Simoes, Austin Boyd, Bikash K. Sinha, Smaine Zeroug
  • Patent number: 10355664
    Abstract: Oscillators that use resonator elements formed from langasite or one of its isomorphs are described herein. The resonator elements include crystal orientations that are stress and/or temperature compensated. The resonators vibrate at an oscillating frequency in a thickness-shear mode of vibration. The oscillating frequency can be used to derive temperature, derive pressure, and/or for frequency control applications.
    Type: Grant
    Filed: July 10, 2014
    Date of Patent: July 16, 2019
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Mihir S. Patel, Bikash K. Sinha, Tsutomu Yamate
  • Patent number: 10353094
    Abstract: A method includes applying acoustic waves to the formation and detecting acoustic waves to acquire acoustic data. The method further includes determining (i) at least one of elastic constant C13 and elastic constant C23, (ii) elastic constant C33, (iii) at least one of elastic constant C44 and elastic constant C55, and (iv) elastic constant C66 using the acquired acoustic data. Elastic constant C11 is determined using elastic constant C33, at least one of elastic constant C44 and elastic constant C55, elastic constant C66, and a relationship between Thomsen parameter gamma and Thomsen parameter epsilon.
    Type: Grant
    Filed: March 30, 2016
    Date of Patent: July 16, 2019
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventor: Bikash K. Sinha
  • Patent number: 10138727
    Abstract: Apparatus and method for characterizing a barrier installed in a borehole traversing a formation including locating an acoustic tool with a receiver and a transmitter at a location in the borehole, activating the acoustic tool to form acoustic waveforms, wherein the receiver records the acoustic waveforms, and processing the waveforms to identify barrier parameters as a function of azimuth and depth along the borehole, wherein the waveforms comprise at least two of sonic signals, ultrasonic pulse-echo signals, and ultrasonic pitch-catch signals.
    Type: Grant
    Filed: January 31, 2014
    Date of Patent: November 27, 2018
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Smaine Zeroug, Bikash K. Sinha, Sandip Bose, Jiaqi Yang, Ting Lei, Ram Sunder Kalyanaraman
  • Patent number: 10054708
    Abstract: Maximum and minimum horizontal stresses, and horizontal to overburden stress ratio, are estimated using radial profiles of shear moduli. Inversion enables estimation of maximum and minimum horizontal stresses using radial profiles of three shear moduli associated with an orthogonal set of axes defined by the three principal stress directions. Differences in the far-field shear moduli are inverted together with two difference equations obtained from the radial profiles of the dipole shear moduli C44 and C55, and borehole stresses in the near-wellbore region. The horizontal to overburden stress ratio is estimated using differences in the compressional, dipole shear, and Stoneley shear slownesses at two depths in the same lithology interval where the formation exhibits azimuthal isotropy in cross-dipole dispersions, implying that horizontal stresses are nearly the same at all azimuths.
    Type: Grant
    Filed: June 2, 2015
    Date of Patent: August 21, 2018
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventor: Bikash K. Sinha
  • Patent number: 9891334
    Abstract: A technique facilitates determination of fracture attributes through the recording and analyzing of borehole sonic data before and after a fracturing operation. The technique comprises generating broadband acoustic waves at an array of receivers based on output from a plurality of acoustic sources. The waveforms of the broadband acoustic waves are recorded and processed to estimate sonic signatures. The sonic signatures are then used to determine fracture attributes. In some applications, the data may be used to determine whether the fractures in the formation are filled with fluid or soft sediments. Information on the fracture attributes is output to a suitable system, e.g. a computer display.
    Type: Grant
    Filed: April 7, 2014
    Date of Patent: February 13, 2018
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Bikash K. Sinha, Ting Lei
  • Publication number: 20170371072
    Abstract: A method for determining properties of a formation traversed by a well or wellbore employs measured sonic data, resistivity data, and density data for an interval-of-interest within the well or wellbore. A formation model that describe properties of the formation at the interval-of-interest is derived from the measured sonic data, resistivity data, and density data for the interval-of-interest. The formation model is used to derive simulated sonic data, resistivity data, and density data for the interval-of-interest. The measured sonic data, resistivity data, and density data for the interval-of-interest and the simulated sonic data, resistivity data, and density data for the interval-of-interest are used to refine the formation model and determine properties of the formation at the interval-of-interest.
    Type: Application
    Filed: January 25, 2016
    Publication date: December 28, 2017
    Inventors: Sushil Shetty, Lin Liang, Tarek M. Habashy, Vanessa Simoes, Austin Boyd, Bikash K. Sinha, Smaine Zeroug
  • Publication number: 20170115413
    Abstract: A technique includes receiving data representing time domain waveforms acquired by receivers of a drilling string-disposed acoustic measurement tool in response to energy emitted by at least one dipole source of the tool. The technique includes processing the data to determine slowness values associated with a plurality of acoustic modes, including a formation flexural acoustic mode and a tool flexural acoustic mode. The technique includes identifying slowness-frequency pairs from the slowness values and determining a shear slowness based at least in part on the identified slowness-frequency pairs.
    Type: Application
    Filed: October 24, 2016
    Publication date: April 27, 2017
    Inventors: Pu Wang, Sandip Bose, Bikash K. Sinha
  • Publication number: 20160356910
    Abstract: A method for torsional wave logging in a borehole of a subterranean formation. The method includes obtaining a torsional wave measurement of the borehole, wherein the torsional wave measurement represents characteristics of a torsional wave propagating within a cylindrical layered structure associated with the borehole, wherein the cylindrical layered structure comprises the subterranean formation and a completion of the borehole, analyzing, by a computer processor, the torsional wave measurement to generate a quality measure of the completion, and displaying the quality measure of the completion.
    Type: Application
    Filed: August 16, 2016
    Publication date: December 8, 2016
    Inventors: BIKASH K. SINHA, SANDIP BOSE, JIAQI YANG, TING LEI, TAREK M. HABASHY, SMAINE ZEROUG, MA LUO
  • Patent number: 9494705
    Abstract: Cased-hole radial profiling of shear parameters from sonic measurements is disclosed.
    Type: Grant
    Filed: August 13, 2012
    Date of Patent: November 15, 2016
    Assignee: Schlumberger Technology Corporation
    Inventor: Bikash K. Sinha
  • Patent number: 9494704
    Abstract: Maximum and minimum horizontal stresses are estimated using radial profiles of shear moduli for a deviated borehole. Inversion enables estimation of maximum and minimum horizontal stresses using radial profiles of three shear moduli associated with an orthogonal set of axis defined by the deviated borehole azimuth from the North and the deviation of the longitudinal axis of the borehole from the vertical.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: November 15, 2016
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventor: Bikash K. Sinha
  • Patent number: 9476998
    Abstract: A method and apparatus for assessing induced fractures in a subterranean formation including acquiring sonic data before and after a hydraulic fracturing operation, calculating a shear modulus in the borehole cross-sectional plane from Stoneley data, and calculating two shear moduli in two borehole orthogonal axial planes from cross dipole data. A method and apparatus for assessing induced fractures in a subterranean formation including collecting sonic data before and after fracturing the formation, calculating a far-field shear modulus in the borehole cross-sectional plane and a far-field shear moduli in the two orthogonal borehole axial planes, inferring the open or closed status of a fracture, and estimating a radial width or height or both of a vertical fracture.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: October 25, 2016
    Assignee: Schlumberger Technology Corporation
    Inventor: Bikash K. Sinha
  • Publication number: 20160291181
    Abstract: A method includes applying acoustic waves to the formation and detecting acoustic waves to acquire acoustic data. The method further includes determining (i) at least one of elastic constant C13 and elastic constant C23, (ii) elastic constant C33, (iii) at least one of elastic constant C44 and elastic constant C55, and (iv) elastic constant C66 using the acquired acoustic data. Elastic constant C11 is determined using elastic constant C33, at least one of elastic constant C44 and elastic constant C55, elastic constant C66, and a relationship between Thomsen parameter gamma and Thomsen parameter epsilon.
    Type: Application
    Filed: March 30, 2016
    Publication date: October 6, 2016
    Inventor: Bikash K. Sinha
  • Patent number: 9448321
    Abstract: A method for torsional wave logging in a borehole of a subterranean formation. The method includes obtaining a torsional wave measurement of the borehole, wherein the torsional wave measurement represents characteristics of a torsional wave propagating within a cylindrical layered structure associated with the borehole, wherein the cylindrical layered structure comprises the subterranean formation and a completion of the borehole, analyzing, by a computer processor, the torsional wave measurement to generate a quality measure of the completion, and displaying the quality measure of the completion.
    Type: Grant
    Filed: January 4, 2013
    Date of Patent: September 20, 2016
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Bikash K. Sinha, Sandip Bose, Jiaqi Yang, Ting Lei, Tarek M. Habashy, Smaine Zeroug, Ma Luo
  • Patent number: 9417352
    Abstract: Systems and methods for the estimating a plurality of anisotropic elastic constants (Cij) using borehole dispersions and refracted compressional headwave velocity at a single logging depth in a vertical, deviated, or horizontal wellbore in a transversely-isotropic with a vertical axis of symmetry (“TIV”) formation. The estimated elastic constants can then be used to calculate near-wellbore stress distributions in the wellbore, which aids in an optimal completion design, such as for shale-gas production in the presence of shale heterogeneity.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: August 16, 2016
    Assignee: Schlumberger Technology Corporation
    Inventor: Bikash K. Sinha