Patents by Inventor Bilal Muhsin

Bilal Muhsin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11969269
    Abstract: A multi-parameter patient monitoring device rack can dock a plurality of patient monitor modules and can communicate with a separate display unit. A signal processing unit can be incorporated into the device rack. A graphics processing unit can be attached to the display unit. The device rack and the graphic display unit can have improved heat dissipation and drip-proof features. The multi-parameter patient monitoring device rack can provide interchangeability and versatility to a multi-parameter patient monitoring system by allowing use of different display units and monitoring of different combinations of parameters. A dual-use patient monitor module can have its own display unit configured for displaying one or more parameters when used as a stand-alone device, and can be docked into the device rack when a handle on the module is folded down.
    Type: Grant
    Filed: February 7, 2023
    Date of Patent: April 30, 2024
    Assignee: Masimo Corporation
    Inventors: Nicholas Evan Barker, Chad A. DeJong, Kirby Clark Dotson, Ammar Al-Ali, Bilal Muhsin, Sujin Hwang, Massi Joe E. Kiani
  • Publication number: 20240136060
    Abstract: A patient monitoring hub can communicate bidirectionally with external devices such as a board-in-cable or a dongle. Medical data can be communicated from the patient monitoring hub to the external devices to cause the external devices to initiate actions. For example, an external device can perform calculations based on data received from the patient monitoring hub, or take other actions (for example, creating a new patient profile, resetting baseline values for algorithms, calibrating algorithms, etc.). The external device can also communicate display characteristics associated with its data to the monitoring hub. The monitoring hub can calculate a set of options for combined layouts corresponding to different external devices or parameters. A display option may be selected for arranging a display screen estate on the monitoring hub.
    Type: Application
    Filed: January 2, 2024
    Publication date: April 25, 2024
    Inventors: Ammar Al-Ali, Bilal Muhsin, Massi Joe E. Kiani, Peter Scott Housel
  • Publication number: 20240135788
    Abstract: A localized sound projection system can coordinate the sounds of speakers to simulate the placement of an auditory cue in a 3D space. The system can include a plurality of speakers configured to output auditory signals and a sound localization controller configured to control the plurality of speakers to coordinate the auditory signals to simulate an origination location of a patient alarm. The sound localization controller can determine adjusted auditory signals and control a plurality of speakers to output the plurality of adjusted auditory signals. A method for dynamically controlling speaker settings in a medical environment can include determining volume settings corresponding to a speaker, monitoring a level of ambient noise corresponding to a room of a patient, controlling the volume settings of the speaker to reduce or increase a sound level output of a speaker. A patient monitoring system can be configured to physically manipulate medical devices in response to audible commands.
    Type: Application
    Filed: October 23, 2023
    Publication date: April 25, 2024
    Inventors: Bilal Muhsin, Ammar Al-Ali
  • Publication number: 20240108293
    Abstract: This disclosure describes example alarm notification systems that can enable a clinician to respond to an alarm notification received via a computing device, which may have more advanced functionality than a pager. The clinician device may be a mobile device, such as a cellphone or smartphone, tablet, laptop, personal digital assistant (PDA), or the like. The clinician device may communicate with a remote server to obtain patient data generated by a patient device at the point-of-care (such as a bedside device or patient-worn monitor). This patient data may be continuous monitoring data for one or more patients. A mobile application (optionally a browser application) on the clinician device can enable the clinician to view continuous monitoring data for multiple patients, as well as view and respond to alarms and alerts, all from the clinician device, regardless of location.
    Type: Application
    Filed: October 17, 2023
    Publication date: April 4, 2024
    Inventors: Omar Ahmed, Bilal Muhsin, Massi Joe E. Kiani, Keith Ward Indorf, Sebastian T. Frey
  • Publication number: 20240112386
    Abstract: System and methods are provided for augmented reality displays for medical and physiological monitoring. Augmented reality user interfaces are virtually pinned to a physical device, a location, or to a patient. An augmented reality position determination process determines the presentation of user interfaces relative to reference positions and reference objects. Detection of gestures causes the augmented reality users interfaces to be updated, such as pinning a user interface to a device, location, or patient. Looking away from an augmented reality user interface causes the user interface to minimize or disappear in an augmented reality display. An augmented reality gesture detection process determines gestures based on captured image data and computer vision techniques performed on the image data.
    Type: Application
    Filed: October 5, 2023
    Publication date: April 4, 2024
    Inventors: Bilal Muhsin, Omar Ahmed, Massi Joe E. Kiani
  • Publication number: 20240112802
    Abstract: A medical network service can replace or supplement some or all of an expensive internally staffed clinical facility network with a cloud-based networking service. The medical network service in certain embodiments can provide networking services via software as a service technologies, platform as a service technologies, and/or infrastructure as a service technologies. The medical network service can provide these services to large existing clinical facilities such as metropolitan hospitals as well as to smaller clinical facilities such as specialized surgical centers. The medical network service can replace and/or supplement existing IT networks in hospitals and other clinical facilities and can therefore reduce costs and increase security and reliability of those networks. In addition, the medical network service can provide synergistic benefits that can improve patient outcomes and patient care.
    Type: Application
    Filed: December 6, 2023
    Publication date: April 4, 2024
    Inventors: Anand Sampath, Bilal Muhsin
  • Publication number: 20240099582
    Abstract: A patient monitoring device can be configured to provide fast and reliable physiological measurements in a variety of care settings including at a patient's home. The device can include a compact, standalone monitor with telehealth capabilities as well as an intuitive interface for use at home. The device can include a blood pressure, capnography, or pulse oximetry module. A device can include a sleek and continuous outer surface that is easy to clean and generally free of crevices, holes, or surfaces that collect external contaminants. For example, portions of the housing can connect together using a limited number of screws, thereby limiting a number of holes. The device can include a vent cover that can be rotated to reconfigure the function of the vent cover. For example, the vent cover can function as a stabilization feature and/or a cover for a ventilation hole, while permitting exhaust through the ventilation hole.
    Type: Application
    Filed: October 4, 2023
    Publication date: March 28, 2024
    Inventors: Ammar Al-Ali, Nicholas Evan Barker, Steven Egge, Chad A. DeJong, Sujin Hwang, Massi Joe E. Kiani, Bilal Muhsin
  • Publication number: 20240095323
    Abstract: A physiological patient monitoring system with a patient-facing interface is disclosed. The patient interface can be used by the patient to communicate with hospital staff without actually requesting attendance and can request attendance for specific purposes. The patient interface may also track patient treatment and inform patients of the details of their treatments.
    Type: Application
    Filed: September 25, 2023
    Publication date: March 21, 2024
    Inventors: Massi Joe E. Kiani, Bilal Muhsin, Ammar Al-Ali, Nicholas Evan Barker, Chad A. DeJong, Omar Ahmed, Keith Ward Indorf, Steve Coon
  • Publication number: 20240081698
    Abstract: A device for obtaining physiological information of a medical patient and wirelessly transmitting the obtained physiological information to a wireless receiver.
    Type: Application
    Filed: September 21, 2023
    Publication date: March 14, 2024
    Inventors: Ammar Al-Ali, Eric Karl Kinast, Bilal Muhsin
  • Patent number: 11918353
    Abstract: A device for obtaining physiological information of a medical patient and wirelessly transmitting the obtained physiological information to a wireless receiver.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: March 5, 2024
    Assignee: Masimo Corporation
    Inventors: Ammar Al-Ali, Eric Karl Kinast, Bilal Muhsin
  • Patent number: 11923080
    Abstract: Medical patient monitoring devices that have the capability of detecting the physical proximity of a clinician token are disclosed. The medical patient monitoring devices may be configured to perform a selected action when the presence of a clinician is detected. The selected action may be dependent upon an attribute of the circumstances surrounding detection of the clinician.
    Type: Grant
    Filed: August 10, 2021
    Date of Patent: March 5, 2024
    Assignee: Masimo Corporation
    Inventors: Ammar Al-Ali, Chad DeJong, Bilal Muhsin, Anand Sampath, Massi Joe E. Kiani
  • Patent number: 11901070
    Abstract: A patient monitoring hub can communicate bidirectionally with external devices such as a board-in-cable or a dongle. Medical data can be communicated from the patient monitoring hub to the external devices to cause the external devices to initiate actions. For example, an external device can perform calculations based on data received from the patient monitoring hub, or take other actions (for example, creating a new patient profile, resetting baseline values for algorithms, calibrating algorithms, etc.). The external device can also communicate display characteristics associated with its data to the monitoring hub. The monitoring hub can calculate a set of options for combined layouts corresponding to different external devices or parameters. A display option may be selected for arranging a display screen estate on the monitoring hub.
    Type: Grant
    Filed: July 12, 2022
    Date of Patent: February 13, 2024
    Assignee: Masimo Corporation
    Inventors: Bilal Muhsin, Massi Joe E. Kiani, Peter Scott Housel, Ammar Al-Ali
  • Publication number: 20240044680
    Abstract: A physiological monitor gauge panel defines parameters to display on a physiological monitor via corresponding gauges. Gauge faces depict a range of parameter values for each of the parameters. An indicator designates a position on each gauge face corresponding to the current parameter value within the range of parameter values. The indicated position on each of the gauges is at the mid-point of each of the gauge faces when each of the parameters is at a nominal value.
    Type: Application
    Filed: July 18, 2023
    Publication date: February 8, 2024
    Inventors: Ammar Al-Ali, Bilal Muhsin, Keith Indorf, Massi Joe E. Kiani
  • Patent number: 11887728
    Abstract: A medical network service can replace or supplement some or all of an expensive internally staffed clinical facility network with a cloud-based networking service. The medical network service in certain embodiments can provide networking services via software as a service technologies, platform as a service technologies, and/or infrastructure as a service technologies. The medical network service can provide these services to large existing clinical facilities such as metropolitan hospitals as well as to smaller clinical facilities such as specialized surgical centers. The medical network service can replace and/or supplement existing IT networks in hospitals and other clinical facilities and can therefore reduce costs and increase security and reliability of those networks. In addition, the medical network service can provide synergistic benefits that can improve patient outcomes and patient care.
    Type: Grant
    Filed: October 1, 2020
    Date of Patent: January 30, 2024
    Assignee: Masimo Corporation
    Inventors: Anand Sampath, Bilal Muhsin
  • Patent number: 11886858
    Abstract: A patient monitoring system includes a physiological sensor to sense light after it has passed through tissue of a patient and generate a signal indicative a physiological parameters in response to the sensed light, and a patient monitoring device in communication with the physiological sensor to receive the signal and determine measurements of the physiological parameters from the received signal. The patient monitoring device includes a processor and memory having multiple system images. The patient monitoring device downloads an image upgrade to one system image that the not latest used or tested system image. The patient monitoring device boots the processor from the system image that includes the image upgrade. If the upgraded system image fails, the patient monitoring device boots the processor from another system image of the multiple system images. The patient monitoring device repairs the failed system image.
    Type: Grant
    Filed: July 26, 2021
    Date of Patent: January 30, 2024
    Assignee: Masimo Corporation
    Inventors: Peter Scott Housel, Bilal Muhsin
  • Publication number: 20230414181
    Abstract: The present disclosure includes a medical monitoring hub as the center of monitoring for a monitored patient. The hub includes configurable medical ports and serial ports for communicating with other medical devices in the patient's proximity. Moreover, the hub communicates with a portable patient monitor. The monitor, when docked with the hub provides display graphics different from when undocked, the display graphics including anatomical information. The hub assembles the often vast amount of electronic medical data, associates it with the monitored patient, and in some embodiments, communicates the data to the patient's medical records.
    Type: Application
    Filed: September 12, 2023
    Publication date: December 28, 2023
    Inventors: Massi Joe E. Kiani, Bilal Muhsin, Ammar Al-Ali, Anand Sampath, Peter Scott Housel, Eric Karl Kinast
  • Patent number: 11844634
    Abstract: This disclosure describes example alarm notification systems that can enable a clinician to respond to an alarm notification received via a computing device, which may have more advanced functionality than a pager. The clinician device may be a mobile device, such as a cellphone or smartphone, tablet, laptop, personal digital assistant (PDA), or the like. The clinician device may communicate with a remote server to obtain patient data generated by a patient device at the point-of-care (such as a bedside device or patient-worn monitor). This patient data may be continuous monitoring data for one or more patients. A mobile application (optionally a browser application) on the clinician device can enable the clinician to view continuous monitoring data for multiple patients, as well as view and respond to alarms and alerts, all from the clinician device, regardless of location.
    Type: Grant
    Filed: July 9, 2021
    Date of Patent: December 19, 2023
    Assignee: Masimo Corporation
    Inventors: Omar Ahmed, Bilal Muhsin, Massi Joe E. Kiani, Keith Ward Indorf, Sebastian T. Frey
  • Patent number: 11830349
    Abstract: A localized sound projection system can coordinate the sounds of speakers to simulate the placement of an auditory cue in a 3D space. The system can include a plurality of speakers configured to output auditory signals and a sound localization controller configured to control the plurality of speakers to coordinate the auditory signals to simulate an origination location of a patient alarm. The sound localization controller can determine adjusted auditory signals and control a plurality of speakers to output the plurality of adjusted auditory signals. A method for dynamically controlling speaker settings in a medical environment can include determining volume settings corresponding to a speaker, monitoring a level of ambient noise corresponding to a room of a patient, controlling the volume settings of the speaker to reduce or increase a sound level output of a speaker. A patient monitoring system can be configured to physically manipulate medical devices in response to audible commands.
    Type: Grant
    Filed: August 8, 2022
    Date of Patent: November 28, 2023
    Assignee: MASIMO CORPORATION
    Inventors: Bilal Muhsin, Ammar Al-Ali
  • Patent number: 11813036
    Abstract: A patient monitoring device can be configured to provide fast and reliable physiological measurements in a variety of care settings including at a patient's home. The device can include a compact, standalone monitor with telehealth capabilities as well as an intuitive interface for use at home. The device can include a blood pressure, capnography, or pulse oximetry module. A device can include a sleek and continuous outer surface that is easy to clean and generally free of crevices, holes, or surfaces that collect external contaminants. For example, portions of the housing can connect together using a limited number of screws, thereby limiting a number of holes. The device can include a vent cover that can be rotated to reconfigure the function of the vent cover. For example, the vent cover can function as a stabilization feature and/or a cover for a ventilation hole, while permitting exhaust through the ventilation hole.
    Type: Grant
    Filed: February 5, 2021
    Date of Patent: November 14, 2023
    Assignee: MASIMO CORPORATION
    Inventors: Ammar Al-Ali, Nicholas Evan Barker, Steven Egge, Chad A. DeJong, Sujin Hwang, Massi Joe E. Kiani, Bilal Muhsin
  • Patent number: 11816771
    Abstract: System and methods are provided for augmented reality displays for medical and physiological monitoring. Augmented reality user interfaces are virtually pinned to a physical device, a location, or to a patient. An augmented reality position determination process determines the presentation of user interfaces relative to reference positions and reference objects. Detection of gestures causes the augmented reality users interfaces to be updated, such as pinning a user interface to a device, location, or patient. Looking away from an augmented reality user interface causes the user interface to minimize or disappear in an augmented reality display. An augmented reality gesture detection process determines gestures based on captured image data and computer vision techniques performed on the image data.
    Type: Grant
    Filed: May 28, 2021
    Date of Patent: November 14, 2023
    Assignee: Masimo Corporation
    Inventors: Bilal Muhsin, Omar Ahmed, Massi Joe E. Kiani