Patents by Inventor Bilgehan Avser

Bilgehan Avser has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210075088
    Abstract: An electronic device may be provided with an antenna module and a phased antenna array on the module. The module may include a logic board, an antenna board surface-mounted to the logic board, and a radio-frequency integrated circuit (RFIC) mounted surface-mounted to the logic board. The phased antenna array may include antennas embedded in the antenna board. The antennas may radiate at centimeter and/or millimeter wave frequencies. The logic board may form a radio-frequency interface between the RFIC and the antennas. Transmission lines in the logic board and the antenna board may include impedance matching segments that help to match the impedance of the RFIC to the impedance of the antennas. The module may efficiently utilize space within the device without sacrificing radio-frequency performance.
    Type: Application
    Filed: August 11, 2020
    Publication date: March 11, 2021
    Inventors: Jennifer M. Edwards, Siwen Yong, Jiangfeng Wu, Harish Rajagopalan, Bilgehan Avser, Simone Paulotto, Mattia Pascolini
  • Patent number: 10944153
    Abstract: An electronic device may be provided with an antenna having a resonating element. The resonating element may have first and second arms extending from opposing sides of a feed. The first arm may have a fundamental mode that radiates in a first communications band such as a 5.0 GHz wireless local area network band. The second arm may have a fundamental mode that radiates in a second communications band such as one or more cellular ultra-high bands. The second resonating element arm may have a harmonic mode that radiates in first and second ultra-wideband (UWB) communications bands. The antenna may include a tunable component that is adjustable between first and second states. The second arm may radiate in the first UWB communications band while the tunable component is in the first state and in the second UWB communications band while the tunable component is in the second state.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: March 9, 2021
    Assignee: Apple Inc.
    Inventors: Salih Yarga, Jingni Zhong, Bilgehan Avser, Mattia Pascolini
  • Publication number: 20210066799
    Abstract: An electronic device may be provided with a housing and an antenna having a resonating element. The resonating element may have first and second arms extending from opposing sides of a feed. The first arm and a portion of the housing may radiate in a cellular ultra-high band. The first arm may have a fundamental mode that radiates in a first ultra-wideband (UWB) communications band at 6.5 GHz. The second arm may have a fundamental mode that radiates in a 5.0 GHz wireless local area network band. The first and second arms may have a harmonic mode that radiates in a second UWB communications band at 8.0 GHz. The antenna may convey radio-frequency signals in each of these communications bands without the need for adjusting components in the antenna to switch between the UWB communications bands.
    Type: Application
    Filed: August 27, 2019
    Publication date: March 4, 2021
    Inventors: Bilgehan Avser, Xu Han, Salih Yarga, Jingni Zhong, Hao Xu, Mattia Pascolini
  • Publication number: 20210066786
    Abstract: An electronic device may be provided with an antenna having a resonating element. The resonating element may have first and second arms extending from opposing sides of a feed. The first arm may have a fundamental mode that radiates in a first communications band such as a 5.0 GHz wireless local area network band. The second arm may have a fundamental mode that radiates in a second communications band such as one or more cellular ultra-high bands. The second resonating element arm may have a harmonic mode that radiates in first and second ultra-wideband (UWB) communications bands. The antenna may include a tunable component that is adjustable between first and second states. The second arm may radiate in the first UWB communications band while the tunable component is in the first state and in the second UWB communications band while the tunable component is in the second state.
    Type: Application
    Filed: August 29, 2019
    Publication date: March 4, 2021
    Inventors: Salih Yarga, Jingni Zhong, Bilgehan Avser, Mattia Pascolini
  • Patent number: 10886617
    Abstract: An electronic device may be provided with a phased antenna array and a display cover layer. The phased antenna array may include a probe-fed dielectric resonator antenna. The antenna may include a dielectric resonating element mounted to a flexible printed circuit. A feed probe may be formed from a patch of conductive traces on a sidewall of the resonating element. The feed probe may excite resonant modes of the resonating element. The resonating element may convey corresponding radio-frequency signals through the display cover layer. An additional feed probe may be mounted to an orthogonal sidewall of the resonating element for covering additional polarizations. Probe-fed dielectric resonator antennas for covering different polarizations and frequencies may be interleaved across the phased antenna array.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: January 5, 2021
    Assignee: Apple Inc.
    Inventors: Bilgehan Avser, Harish Rajagopalan, Simone Paulotto, Jennifer M. Edwards, Mattia Pascolini
  • Patent number: 10886619
    Abstract: An electronic device may be provided with a phased antenna array and a display cover layer. The phased antenna array may include a dielectric resonator antenna. The dielectric resonator antenna may include a dielectric resonating element embedded in a lower permittivity dielectric substrate. The substrate and the resonating element may be mounted to a flexible printed circuit. A slot may be formed in ground traces on the flexible printed circuit and aligned with the resonating element. The slot may excite resonant modes of the resonating element. The resonating element may convey corresponding radio-frequency signals through the cover layer. A dielectric matching layer may be interposed between the resonating element and the cover layer. If desired, the slot may radiate additional radio-frequency signals and the matching layer may have a tapered shape. Dielectric resonator antennas for covering different polarizations and frequencies may be interleaved across the array.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: January 5, 2021
    Assignee: Apple Inc.
    Inventors: Bilgehan Avser, Harish Rajagopalan, Simone Paulotto, Jennifer M. Edwards, Hao Xu, Rodney A. Gomez Angulo, Matthew D. Hill, Mattia Pascolini
  • Publication number: 20200321690
    Abstract: An electronic device may be provided with a transceiver, a substrate, and antennas mounted to the substrate. The transceiver and antennas may convey signals between 10 GHz and 300 GHz. A radio-frequency connector may be mounted to the substrate. A coaxial cable may couple the transceiver to the connector. A stripline in the substrate may couple the connector to the antennas. Impedance matching structures may be embedded in the substrate for matching an impedance of the stripline to an impedance of the coaxial cable. The impedance matching structures may include a fence of conductive vias, landing pads, and a volume of the dielectric substrate defined by the fence of conductive vias and the landing pads. The impedance matching structures may be configured to perform impedance matching over a relatively wide bandwidth that includes the frequency band of operation for the antennas.
    Type: Application
    Filed: May 15, 2019
    Publication date: October 8, 2020
    Inventors: Simone Paulotto, Jennifer M. Edwards, Harish Rajagopalan, Bilgehan Avser
  • Publication number: 20200280131
    Abstract: An electronic device may be provided with a phased antenna array and a display cover layer. The phased antenna array may include a probe-fed dielectric resonator antenna. The antenna may include a dielectric resonating element mounted to a flexible printed circuit. A feed probe may be formed from a patch of conductive traces on a sidewall of the resonating element. The feed probe may excite resonant modes of the resonating element. The resonating element may convey corresponding radio-frequency signals through the display cover layer. An additional feed probe may be mounted to an orthogonal sidewall of the resonating element for covering additional polarizations. Probe-fed dielectric resonator antennas for covering different polarizations and frequencies may be interleaved across the phased antenna array.
    Type: Application
    Filed: February 28, 2019
    Publication date: September 3, 2020
    Inventors: Bilgehan Avser, Harish Rajagopalan, Simone Paulotto, Jennifer M. Edwards, Mattia Pascolini
  • Publication number: 20200280133
    Abstract: An electronic device may be provided with a phased antenna array and a display cover layer. The phased antenna array may include a dielectric resonator antenna. The dielectric resonator antenna may include a dielectric resonating element embedded in a lower permittivity dielectric substrate. The substrate and the resonating element may be mounted to a flexible printed circuit. A slot may be formed in ground traces on the flexible printed circuit and aligned with the resonating element. The slot may excite resonant modes of the resonating element. The resonating element may convey corresponding radio-frequency signals through the cover layer. A dielectric matching layer may be interposed between the resonating element and the cover layer. If desired, the slot may radiate additional radio-frequency signals and the matching layer may have a tapered shape. Dielectric resonator antennas for covering different polarizations and frequencies may be interleaved across the array.
    Type: Application
    Filed: February 28, 2019
    Publication date: September 3, 2020
    Inventors: Bilgehan Avser, Harish Rajagopalan, Simone Paulotto, Jennifer M. Edwards, Hao Xu, Rodney A. Gomez Angulo, Matthew D. Hill, Mattia Pascolini
  • Patent number: 10741906
    Abstract: An electronic device may be provided antennas and control circuitry. The antennas may be arranged in an array of unit cells. Each unit cell may include a first antenna that conveys signals in a first frequency band higher than 10 GHz and a second antenna that conveys radio-frequency signals in a second frequency band higher than the first frequency band. A first of the unit cells may be provided with a first set of antennas that transmits radio-frequency signals in a third frequency band higher than the second frequency band. A second of the antenna unit cells may be provided with a second set of antennas that receives the radio-frequency signals after being reflected off of external objects. The control circuitry may perform spatial ranging operations by processing the transmitted and received signals in the second frequency band.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: August 11, 2020
    Assignee: Apple Inc.
    Inventors: Rodney A. Gomez Angulo, Bilgehan Avser, Harish Rajagopalan, Simone Paulotto, Jennifer M. Edwards
  • Patent number: 10727580
    Abstract: An electronic device may be provided with antenna structures that convey radio-frequency signals greater than 10 GHz. The antenna structures may include overlapping first and second patches. The first patch may include a hole. A transmission line for the second patch may include a conductive via extending through the hole. The via may be coupled to a first end of a trace. A second end of the trace may be coupled to a feed terminal on the second patch over an additional via. The hole may be located within a central region of the first patch to allow the via to pass through the hole without electromagnetically coupling to the first patch. If desired, adjustable impedance matching circuits may be used to couple selected impedances to the antenna feeds that help ensure that the first and second patch antennas are sufficiently isolated from each other.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: July 28, 2020
    Assignee: Apple Inc.
    Inventors: Harish Rajagopalan, Jennifer M. Edwards, Simone Paulotto, Bilgehan Avser, Hao Xu, Rodney A. Gomez Angulo, Travis A. Barbieri, Georgios Atmatzakis, Matthew A. Mow
  • Publication number: 20200106181
    Abstract: An electronic device may be provided with a phased antenna array. Each antenna in the array may include a patch element having first, second, third, and fourth positive antenna feed terminals. The first and second terminals may convey first signals with a first polarization. The third and fourth terminals may convey second signals with a second polarization. Phase shifting components such as phase shifting transmission line segments or phase shifter circuits may ensure that the first signals at the first terminal are out of phase with respect to the first signals at the second terminal and may ensure that the second signals at the third terminal are out of phase with respect to the second signals at the fourth terminal. This may allow antenna current density for both polarizations to be symmetrically distributed about a normal axis of the patch element.
    Type: Application
    Filed: September 28, 2018
    Publication date: April 2, 2020
    Inventors: Bilgehan Avser, Jennifer M. Edwards, Simone Paulotto, Harish Rajagopalan, Hao Xu, Rodney A. Gomez Angulo, Matthew A. Mow, Mattia Pascolini
  • Publication number: 20200106158
    Abstract: An electronic device may be provided antennas and control circuitry. The antennas may be arranged in an array of unit cells. Each unit cell may include a first antenna that conveys signals in a first frequency band higher than 10 GHz and a second antenna that conveys radio-frequency signals in a second frequency band higher than the first frequency band. A first of the unit cells may be provided with a first set of antennas that transmits radio-frequency signals in a third frequency band higher than the second frequency band. A second of the antenna unit cells may be provided with a second set of antennas that receives the radio-frequency signals after being reflected off of external objects. The control circuitry may perform spatial ranging operations by processing the transmitted and received signals in the second frequency band.
    Type: Application
    Filed: September 28, 2018
    Publication date: April 2, 2020
    Inventors: Rodney A. Gomez Angulo, Bilgehan Avser, Harish Rajagopalan, Simone Paulotto, Jennifer M. Edwards
  • Publication number: 20200106192
    Abstract: An electronic device may be provided with a cover layer and a phased antenna array mounted against the cover layer. Each antenna in the array may include a first patch element that is directly fed using first and second feeds and a second patch element that is directly fed using third and fourth feeds. A slot element may be formed in the first patch element. The first patch element may radiate in a first frequency band through the cover layer. The slot element may radiate in a second frequency band that is higher than the first frequency band through the cover layer. The second patch element may indirectly feed the slot element. Locating the radiating elements for each frequency band in the same plane may allow the antenna to radiate through the cover layer in both frequency bands with satisfactory antenna efficiency.
    Type: Application
    Filed: September 28, 2018
    Publication date: April 2, 2020
    Inventors: Bilgehan Avser, Harish Rajagopalan, Simone Paulotto, Jennifer M. Edwards, Hao Xu, Rodney A. Gomez Angulo, Matthew A. Mow, Mattia Pascolini
  • Patent number: 10608344
    Abstract: An electronic device may be provided with wireless circuitry. The wireless circuitry may include one or more antennas and transceiver circuitry such as centimeter and millimeter wave transceiver circuitry (e.g., circuitry that transmits and receives antennas signals at frequencies greater than 10 GHz). The antennas may be arranged in a phased antenna array. The phased antenna array may be formed on a dielectric substrate and may include one or more indirectly-fed microstrip dipole antennas. Conductive traces forming dipole antenna resonating elements or parasitic resonating elements for the dipole antennas in the phased antenna array may be embedded within or formed on an upper surface of the dielectric substrate. The phased antenna array may include both dipole antennas and patch antennas. Dipole antennas may be interposed between adjacent patch antennas or formed next to patch antennas.
    Type: Grant
    Filed: June 7, 2018
    Date of Patent: March 31, 2020
    Assignee: Apple Inc.
    Inventors: Simone Paulotto, Jennifer M. Edwards, Harish Rajagopalan, Bilgehan Avser
  • Publication number: 20200021019
    Abstract: An electronic device may be provided with antenna structures that convey radio-frequency signals greater than 10 GHz. The antenna structures may include overlapping first and second patches. The first patch may include a hole. A transmission line for the second patch may include a conductive via extending through the hole. The via may be coupled to a first end of a trace. A second end of the trace may be coupled to a feed terminal on the second patch over an additional via. The hole may be located within a central region of the first patch to allow the via to pass through the hole without electromagnetically coupling to the first patch. If desired, adjustable impedance matching circuits may be used to couple selected impedances to the antenna feeds that help ensure that the first and second patch antennas are sufficiently isolated from each other.
    Type: Application
    Filed: July 16, 2018
    Publication date: January 16, 2020
    Inventors: Harish Rajagopalan, Jennifer M. Edwards, Simone Paulotto, Bilgehan Avser, Hao Xu, Rodney A. Gomez Angulo, Travis A. Barbieri, Georgios Atmatzakis, Matthew A. Mow
  • Patent number: 10530042
    Abstract: An electronic device may be provided with wireless circuitry. The wireless circuitry may include multiple antennas and transceiver circuitry. The antennas may include antenna structures at opposing first and second ends of the electronic device. The antenna structures at a given end of the device may include antenna structures that are shared between multiple antennas. The electronic device may include a first antenna with an inverted-F antenna resonating element formed from portions of a peripheral conductive housing structure and may have an antenna ground that is separated from the antenna resonating element by a gap. A return path may bridge the gap. The electronic device may also include a second antenna that includes the antenna ground and an additional antenna resonating element. The antenna resonating element of the second antenna may be parasitically coupled to the return path of the inverted-F antenna at given frequencies.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: January 7, 2020
    Assignee: Apple Inc.
    Inventors: Bilgehan Avser, Georgios Atmatzakis, Hao Xu, Mattia Pascolini, Salih Yarga, Xu Gao, Xu Han, Yijun Zhou
  • Publication number: 20190379134
    Abstract: An electronic device may be provided with wireless circuitry. The wireless circuitry may include one or more antennas and transceiver circuitry such as centimeter and millimeter wave transceiver circuitry (e.g., circuitry that transmits and receives antennas signals at frequencies greater than 10 GHz). The antennas may be arranged in a phased antenna array. The phased antenna array may be formed on a dielectric substrate and may include one or more indirectly-fed microstrip dipole antennas. Conductive traces forming dipole antenna resonating elements or parasitic resonating elements for the dipole antennas in the phased antenna array may be embedded within or formed on an upper surface of the dielectric substrate. The phased antenna array may include both dipole antennas and patch antennas. Dipole antennas may be interposed between adjacent patch antennas or formed next to patch antennas.
    Type: Application
    Filed: June 7, 2018
    Publication date: December 12, 2019
    Inventors: Simone Paulotto, Jennifer M. Edwards, Harish Rajagopalan, Bilgehan Avser
  • Patent number: 10476170
    Abstract: An electronic device may be provided with a sidewall, a display module separated from the sidewall by a gap, a display cover, a conductive bucket mounted to the display cover within the gap, and a phased antenna array mounted to the bucket for conveying millimeter wave signals through the display cover. The sidewall may form part of an antenna for conveying non-millimeter wave signals. The array may include resonating elements on a substrate. The resonating elements may be fed using feed terminals coupled to alternating sides of the resonating elements. Dielectric layers having a dielectric constant lower than that of the display cover may be provided on a surface of the display cover within the bucket. The array may operate with satisfactory efficiency despite the small amount of available space within the device, electromagnetic interference from the sidewall and the display module, and dielectric loading by the display cover.
    Type: Grant
    Filed: February 27, 2018
    Date of Patent: November 12, 2019
    Assignee: Apple Inc.
    Inventors: Harish Rajagopalan, Rodney A. Gomez Angulo, Simone Paulotto, Matthew A. Mow, Bilgehan Avser, Hao Xu, Jennifer M. Edwards, Mattia Pascolini
  • Publication number: 20190319367
    Abstract: An electronic device may be provided with a dielectric cover layer, a dielectric substrate, and a phased antenna array on the dielectric substrate for conveying millimeter wave signals through the dielectric cover layer. The array may include conductive traces mounted against the dielectric layer. The conductive traces may form patch elements or parasitic elements for the phased antenna array. The dielectric layer may have a dielectric constant and a thickness selected to form a quarter wave impedance transformer for the array at a wavelength of operation of the array. The substrate may include fences of conductive vias that laterally surround each of the antennas within the array. When configured in this way, signal attenuation, destructive interference, and surface wave generation associated with the presence of the dielectric layer over the phased antenna array may be minimized.
    Type: Application
    Filed: April 11, 2018
    Publication date: October 17, 2019
    Inventors: Jennifer M. Edwards, Harish Rajagopalan, Simone Paulotto, Bilgehan Avser, Hao Xu, Rodney A. Gomez Angulo, Siwen Yong, Matthew A. Mow, Mattia Pascolini