Patents by Inventor Bill May

Bill May has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8666627
    Abstract: An electromechanical braking system includes first and second electromechanical actuator controllers (EMACs) that each independently generate a complete set of drive control signals for an associated set of electromechanical actuators (EMAs). The drive control signals are generated in accordance with an antiskid algorithm to impart antiskid control to the braking of wheels associated with the EMAs. Drive signals for some of the EMAs from the set of EMAs are output by drivers of the first EMAC and drive signals for the other EMAs from the set of EMAs are output by drivers of the second EMAC. Drive control signals from one of the EMACs are used to control output the drive signals for all the EMAs from the set of EMAs, regardless of the EMAC in which the associated drivers are present. The drive control signals from the other of the EMACs are used as a backup set of drive control signals.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: March 4, 2014
    Assignee: Goodrich Corporation
    Inventor: Bill May
  • Patent number: 8112213
    Abstract: A system, apparatus and method provide a means for controlling an electric brake actuator. An electromechanical actuator controller (EMAC) is configured to receive first data indicative of a desired braking force, second data indicative of a braking command generated by a brake input device, the second data different from said first data, and third data indicative of a braking mode. Based on the third data, the EMAC selectively uses the first data or the second data to control the actuator.
    Type: Grant
    Filed: April 24, 2009
    Date of Patent: February 7, 2012
    Assignee: Goodrich Corporation
    Inventors: Eric D. Cahill, Lawrence F. Corio, Bill May, Andrew B. Walsh, Scott Snelling
  • Publication number: 20100274458
    Abstract: A system, apparatus and method provide a means for controlling an electric brake actuator. An electromechanical actuator controller (EMAC) is configured to receive first data indicative of a desired braking force, second data indicative of a braking command generated by a brake input device, the second data different from said first data, and third data indicative of a braking mode. Based on the third data, the EMAC selectively uses the first data or the second data to control the actuator.
    Type: Application
    Filed: April 24, 2009
    Publication date: October 28, 2010
    Inventors: Eric D. Cahill, Lawrence F. Corio, Bill May, Andrew B. Walsh, Scott Snelling
  • Publication number: 20100070150
    Abstract: An electromechanical braking system includes first and second electromechanical actuator controllers (EMACs) that each independently generate a complete set of drive control signals for an associated set of electromechanical actuators (EMAs). The drive control signals are generated in accordance with an antiskid algorithm to impart antiskid control to the braking of wheels associated with the EMAs. Drive signals for some of the EMAs from the set of EMAs are output by drivers of the first EMAC and drive signals for the other EMAs from the set of EMAs are output by drivers of the second EMAC. Drive control signals from one of the EMACs are used to control output the drive signals for all the EMAs from the set of EMAs, regardless of the EMAC in which the associated drivers are present. The drive control signals from the other of the EMACs are used as a backup set of drive control signals.
    Type: Application
    Filed: May 15, 2008
    Publication date: March 18, 2010
    Applicant: GOODRICH CORPORATION
    Inventor: Bill May
  • Publication number: 20080258548
    Abstract: According to the present invention, an electromechanical braking system is provided. The braking system includes at least one brake system control unit (BSCU) for converting an input brake command signal into a brake clamp force command signal. In addition, the braking system includes a first electromechanical actuator controller (EMAC) and a second electromechanical actuator controller (EMAC) configured to receive the brake clamp force command signal from the at least one BSCU and to convert the brake clamp force command signal to at least one electromechanical actuator drive control signal. Further, the braking system includes at least one electromechanical actuator configured to receive the at least one drive control signal and to apply a brake clamp force to at least one wheel to be braked in response to the at least one drive control signal. Moreover, the first EMAC and the second EMAC are configured to perform antiskid control in relation to the at least one wheel to be braked.
    Type: Application
    Filed: April 18, 2007
    Publication date: October 23, 2008
    Inventors: Bill May, Henry Grant
  • Publication number: 20080258547
    Abstract: An electromechanical braking system for an aircraft, including a first power conversion module (PCM) and a second power conversion module (PCM), each configured to receive power from a respective independent power source on the aircraft. The system further includes at least one brake system control unit (BSCU) for converting an input brake command signal into a brake clamp force command signal. At least a first brake control module (BCM) and a second brake control module (BCM) are provided, each configured to receive the brake clamp force command signal from the at least one BSCU and to output a primary brake clamp force command signal and an alternate brake clamp force command signal based on the received brake clamp force command signal. A first electromechanical actuator controller (EMAC) and a second electromechanical actuator controller (EMAC) are provided, each configured to convert a brake clamp force command signal to at least one electromechanical actuator drive control signal.
    Type: Application
    Filed: April 18, 2007
    Publication date: October 23, 2008
    Inventors: Mihai Ralea, Bill May, Henry Grant
  • Patent number: 6611116
    Abstract: Methods and apparatus for controlling performance of electric motors in a system having two or more electric motors, the motors adapted for being coupled to two or more wheels of an electric vehicle, each of the electric motors having armature and field coils which are independently excited by a source of voltage to generate armature and field currents, the armatures being connected in series to the voltage source include detecting a condition in the system indicating that one of the wheels is slipping, reducing power delivered to one of the motors that is associated with the slipping wheel in response to the detection of the condition, providing power to the one or more motors that are not associated with the slipping wheel after the power delivered to the motor associated with the slipping wheel is reduced, and restoring the power delivered to the one of the motors associated with the slipping wheel in response to a recovery event.
    Type: Grant
    Filed: May 10, 2001
    Date of Patent: August 26, 2003
    Assignee: Curtis Instruments, Inc.
    Inventors: Michael Bachman, Gevorg Nahapetian, Bill May
  • Publication number: 20020005304
    Abstract: Methods and apparatus for controlling performance of electric motors in a system having two or more electric motors, the motors adapted for being coupled to two or more wheels of an electric vehicle, each of the electric motors having armature and field coils which are independently excited by a source of voltage to generate armature and field currents, the armatures being connected in series to the voltage source include detecting a condition in the system indicating that one of the wheels is slipping, reducing power delivered to one of the motors that is associated with the slipping wheel in response to the detection of the condition, providing power to the one or more motors that are not associated with the slipping wheel after the power delivered to the motor associated with the slipping wheel is reduced, and restoring the power delivered to the one of the motors associated with the slipping wheel in response to a recovery event.
    Type: Application
    Filed: May 10, 2001
    Publication date: January 17, 2002
    Applicant: Curtis Instruments, Inc.
    Inventors: Michael Bachman, Gevorg Nahapetian, Bill May