Patents by Inventor Binghe Gu

Binghe Gu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230372224
    Abstract: A fixative polymer is provided, comprising: structural units of monoethylenically unsaturated C1-12 alkyl (meth)acrylate monomer; structural units of monoethylenically unsaturated carboxylic acid containing monomer; structural units of monoethylenically unsaturated hydroxy functionalized C1-16 alkyl (meth)acrylate monomer; and structural units of carbosiloxane monomer of formula (I) wherein a is 0 to 3; wherein d is 0 or 1; wherein R1 is hydrogen, C1-10 alkyl, aryl, —OSi(R9)3 or —X—SiOSi(R9)3; wherein R2 and R9 are hydrogen or C1-10 alkyl; wherein R8 is —OSi(CH3)2OSi(CH3)3; wherein Y is formula (II), (III), (IV) or (V) wherein R4, R6 and R10 are hydrogen or C1-4 alkyl; wherein X, R3 and R5 are a divalent linking group; wherein R7 is a C1-10 alkyl group; wherein b is 0 to 4 and wherein c is 0 or 1.
    Type: Application
    Filed: November 15, 2021
    Publication date: November 23, 2023
    Inventors: Lu Bai, Ligeng Yin, Fanwen Zeng, Rosalind Toth, Jennifer Koenig, Michaeleen Pacholski, Nanguo Liu, Michael Telgenhoff, Tian Lan, Meng Jing, Binghe Gu
  • Publication number: 20230117582
    Abstract: A hair care formulation is provided, comprising: a dermatologically acceptable vehicle; a dermatologically acceptable oil; and a deposition aid polymer, wherein the deposition aid polymer is a dextran polymer functionalized with an amine group; wherein the dextran polymer has a weight average molecular weight of 100,000 to 650,000 Daltons; and wherein the deposition aid polymer enhances deposition of the dermatologically acceptable oil from the hair care formulation onto mammalian hair.
    Type: Application
    Filed: March 17, 2021
    Publication date: April 20, 2023
    Inventors: Lu Bai, Nikhil J. Fernandes, Emmett M. Partain, III, Lyndsay M. Leal, Binghe Gu, Jennifer P. Todd, Peilin Yang
  • Publication number: 20160009624
    Abstract: A salt-splitting liquid and a process that uses the salt-splitting liquid to “split” ammonium propionate salts into ammonia (or amines) and propionic acid that minimizes increases in the viscosity.
    Type: Application
    Filed: February 17, 2014
    Publication date: January 14, 2016
    Applicant: Dow Global Technologies LLC
    Inventors: Sanjib Biswas, Barry B. Fish, Viet Pham, Binghe Gu, Brandon A. Rodriguez
  • Patent number: 8455607
    Abstract: A curable liquid polysiloxane/TiO2 composite for use as a light emitting diode encapsulant is provided, comprising: a polysiloxane with TiO2 domains having an average domain size of less than 5 nm, wherein the curable liquid polysiloxane/TiO2 composite contains 20 to 60 mol % TiO2 (based on total solids); wherein the curable liquid polysiloxane/TiO2 composite exhibits a refractive index of >1.61 to 1.7 and wherein the curable liquid polysiloxane/TiO2 composite is a liquid at room temperature and atmospheric pressure. Also provided is a light emitting diode manufacturing assembly.
    Type: Grant
    Filed: August 17, 2011
    Date of Patent: June 4, 2013
    Assignees: Rohm and Haas Electronic Materials LLC, Dow Global Technologies LLC
    Inventors: Weijun Zhou, Binghe Gu, John W. Lyons, Allen S. Bulick, Garo Khanarian, Paul J. Popa, John R. Ell
  • Patent number: 8450445
    Abstract: A method of making a light emitting diode (LED) having an optical element is provided, comprising: providing a curable liquid polysiloxane/TiO2 composite, which exhibits a refractive index of >1.61 to 1.7 and which is a liquid at room temperature and atmospheric pressure; providing a semiconductor light emitting diode die having a face, wherein the semiconductor light emitting diode die emits light through the face; contacting the semiconductor light emitting diode die with the curable liquid polysiloxane/TiO2 composite; and, curing the curable liquid polysiloxane/TiO2 composite to form an optical element; wherein at least a portion of the optical element is adjacent to the face.
    Type: Grant
    Filed: August 17, 2011
    Date of Patent: May 28, 2013
    Assignees: Rohm and Haas Electronic Materials LLC, Dow Global Technologies LLC
    Inventors: John W. Lyons, Binghe Gu, Allen S. Bulick, Weijun Zhou, Paul J. Popa, Garo Khanarian, John R. Ell
  • Publication number: 20130045552
    Abstract: A method of making a light emitting diode (LED) having an optical element is provided, comprising: providing a curable liquid polysiloxane/TiO2 composite, which exhibits a refractive index of >1.61 to 1.7 and which is a liquid at room temperature and atmospheric pressure; providing a semiconductor light emitting diode die having a face, wherein the semiconductor light emitting diode die emits light through the face; contacting the semiconductor light emitting diode die with the curable liquid polysiloxane/TiO2 composite; and, curing the curable liquid polysiloxane/TiO2 composite to form an optical element; wherein at least a portion of the optical element is adjacent to the face.
    Type: Application
    Filed: August 17, 2011
    Publication date: February 21, 2013
    Applicant: ROHM AND HAAS ELECTRONIC MATERIALS LLC
    Inventors: John W. Lyons, Binghe Gu, Allen S. Bulick, Weijun Zhou, Paul J. Popa, Garo Khanarian, John R. Ell
  • Publication number: 20130045292
    Abstract: A curable liquid polysiloxane/TiO2 composite for use as a light emitting diode encapsulant is provided, comprising: a polysiloxane with TiO2 domains having an average domain size of less than 5 nm, wherein the curable liquid polysiloxane/TiO2 composite contains 20 to 60 mol % TiO2 (based on total solids); wherein the curable liquid polysiloxane/TiO2 composite exhibits a refractive index of >1.61 to 1.7 and wherein the curable liquid polysiloxane/TiO2 composite is a liquid at room temperature and atmospheric pressure. Also provided is a light emitting diode manufacturing assembly.
    Type: Application
    Filed: August 17, 2011
    Publication date: February 21, 2013
    Applicant: ROHM AND HAAS ELECTRONIC MATERIALS LLC
    Inventors: Weijun Zhou, Binghe Gu, John W. Lyons, Allen S. Bulick, Garo Khanarian, Paul J. Popa, John R. Ell
  • Publication number: 20110240541
    Abstract: A monolith for liquid chromatography is disclosed that involves a reaction product of; a (1) crosslinker having at least three adjacent groups, selected from ethylene oxide, polyethylene oxide, and mixtures thereof, and two or more pendent vinyl groups, and (2) monomer having the formula, CH2?CR—Y—Z, where R is H or CH3, where Z is a functional group selected to impart a desired interaction property to the monolith, and where Y is nothing, or any group that will not materially affect or compete with the function of the functional group (Z) in the monolith, or the reactivity of vinyl groups in the crosslinker or monomer.
    Type: Application
    Filed: April 6, 2010
    Publication date: October 6, 2011
    Inventors: Binghe Gu, Milton L. Lee
  • Patent number: 7691263
    Abstract: A monolith for liquid chromatography is disclosed that involves a reaction product of; a (1) crosslinker having at least three adjacent groups, selected from ethylene oxide, polyethylene oxide, and mixtures thereof, and two or more pendent vinyl groups, and (2) monomer having the formula, CH2?CR—Y—Z, where R is H or CH3, where Z is a functional group selected to impart a desired interaction property to the monolith, and where Y is nothing, or any group that will not materially affect or compete with the function of the functional group (Z) in the monolith, or the reactivity of vinyl groups in the crosslinker or monomer.
    Type: Grant
    Filed: May 19, 2006
    Date of Patent: April 6, 2010
    Assignee: Brigham Young University
    Inventors: Binghe Gu, Milton L. Lee