Patents by Inventor Binghua Hu

Binghua Hu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9633849
    Abstract: A process for forming at least two different doping levels at the surface of a wafer using one photo resist pattern and implantation process step. A resist layer is developed (but not baked) to form a first resist geometry and a plurality of sublithographic resist geometries. The resist layer is baked causing the sublithographic resist geometries to reflow into a continuous second resist geometry having a thickness less that the first resist geometry. A high energy implant implants dopants through the second resist geometry but not through the first resist geometry. A low energy implant is blocked by both the first and second resist geometries.
    Type: Grant
    Filed: April 8, 2016
    Date of Patent: April 25, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Sameer P. Pendharkar, Binghua Hu
  • Patent number: 9608105
    Abstract: The density of a transistor array is increased by forming one or more deep trench isolation structures in a semiconductor material. The deep trench isolation structures laterally surround the transistors in the array. The deep trench isolation structures limit the lateral diffusion of dopants and the lateral movement of charge carriers.
    Type: Grant
    Filed: June 4, 2015
    Date of Patent: March 28, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Takehito Tamura, Binghua Hu, Sameer Pendharkar, Guru Mathur
  • Patent number: 9583612
    Abstract: An integrated circuit which includes a field-plated FET is formed by forming a first opening in a layer of oxide mask, exposing an area for a drift region. Dopants are implanted into the substrate under the first opening. Subsequently, dielectric sidewalls are formed along a lateral boundary of the first opening. A field relief oxide is formed by thermal oxidation in the area of the first opening exposed by the dielectric sidewalls. The implanted dopants are diffused into the substrate to form the drift region, extending laterally past the layer of field relief oxide. The dielectric sidewalls and layer of oxide mask are removed after the layer of field relief oxide is formed. A gate is formed over a body of the field-plated FET and over the adjacent drift region. A field plate is formed immediately over the field relief oxide adjacent to the gate.
    Type: Grant
    Filed: January 21, 2016
    Date of Patent: February 28, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Henry Litzmann Edwards, Binghua Hu, James Robert Todd
  • Patent number: 9583579
    Abstract: A semiconductor device is formed by forming a deep trench in a substrate and a dielectric liner on sidewalls of the deep trench. A first undoped polysilicon layer is formed on the semiconductor device, extending into the deep trench on the dielectric liner, but not filling the deep trench. Dopants are implanted into the first polysilicon layer. A second layer of polysilicon is formed on the first layer of polysilicon. A thermal drive anneal activates and diffuses the dopants. In one version, the dielectric liner is removed at the bottom of the deep trench before the first polysilicon layer is formed, so that the polysilicon in the deep trench provides a contact to the substrate. In another version, the polysilicon in the deep trench is isolated from the substrate by the dielectric liner.
    Type: Grant
    Filed: June 24, 2016
    Date of Patent: February 28, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Binghua Hu, Sameer P. Pendharkar, Jarvis Benjamin Jacobs
  • Publication number: 20160315141
    Abstract: A semiconductor device has an n-type buried layer formed by implanting antimony and/or arsenic into the p-type first epitaxial layer at a high dose and low energy, and implanting phosphorus at a low dose and high energy. A thermal drive process diffuses and activates both the heavy dopants and the phosphorus. The antimony and arsenic do not diffuse significantly, maintaining a narrow profile for a main layer of the buried layer. The phosphorus diffuses to provide a lightly-doped layer several microns thick below the main layer. An epitaxial p-type layer is grown over the buried layer.
    Type: Application
    Filed: June 7, 2016
    Publication date: October 27, 2016
    Inventors: Sameer P. Pendharkar, Binghua Hu, Henry Litzmann Edwards
  • Publication number: 20160308007
    Abstract: A semiconductor device is formed by forming a deep trench in a substrate and a dielectric liner on sidewalls of the deep trench. A first undoped polysilicon layer is formed on the semiconductor device, extending into the deep trench on the dielectric liner, but not filling the deep trench. Dopants are implanted into the first polysilicon layer. A second layer of polysilicon is formed on the first layer of polysilicon. A thermal drive anneal activates and diffuses the dopants. In one version, the dielectric liner is removed at the bottom of the deep trench before the first polysilicon layer is formed, so that the polysilicon in the deep trench provides a contact to the substrate. In another version, the polysilicon in the deep trench is isolated from the substrate by the dielectric liner.
    Type: Application
    Filed: June 24, 2016
    Publication date: October 20, 2016
    Inventors: Binghua Hu, Sameer P. Pendharkar, Jarvis Benjamin Jacobs
  • Patent number: 9431286
    Abstract: A semiconductor device with a buried layer has a deep trench structure abutting the buried layer and a self-aligned sinker along sidewalls of the deep trench structure. The semiconductor device may be formed by forming a portion of a deep trench down to the buried layer, and implanting dopants into a substrate of the semiconductor device along sidewalls of the deep trench, and subsequently forming a remainder of the deep trench extending below the buried layer. Alternatively, the semiconductor device may be formed by forming the deep trench to extend below the buried layer, and subsequently implanting dopants into the substrate of the semiconductor device along sidewalls of the deep trench.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: August 30, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Sameer P Pendharkar, Binghua Hu, Abbas Ali, Henry Litzmann Edwards, John P. Erdeljac, Britton Robbins, Jarvis Benjamin Jacobs
  • Publication number: 20160225672
    Abstract: A process for forming at least two different doping levels at the surface of a wafer using one photo resist pattern and implantation process step. A resist layer is developed (but not baked) to form a first resist geometry and a plurality of sublithographic resist geometries. The resist layer is baked causing the sublithographic resist geometries to reflow into a continuous second resist geometry having a thickness less that the first resist geometry. A high energy implant implants dopants through the second resist geometry but not through the first resist geometry. A low energy implant is blocked by both the first and second resist geometries.
    Type: Application
    Filed: April 8, 2016
    Publication date: August 4, 2016
    Inventors: Sameer P. PENDHARKAR, Binghua HU
  • Patent number: 9401410
    Abstract: A semiconductor device is formed by forming a deep trench in a substrate and a dielectric liner on sidewalls of the deep trench. A first undoped polysilicon layer is formed on the semiconductor device, extending into the deep trench on the dielectric liner, but not filling the deep trench. Dopants are implanted into the first polysilicon layer. A second layer of polysilicon is formed on the first layer of polysilicon. A thermal drive anneal activates and diffuses the dopants. In one version, the dielectric liner is removed at the bottom of the deep trench before the first polysilicon layer is formed, so that the polysilicon in the deep trench provides a contact to the substrate. In another version, the polysilicon in the deep trench is isolated from the substrate by the dielectric liner.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: July 26, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Binghua Hu, Sameer P Pendharkar, Jarvis Benjamin Jacobs
  • Patent number: 9385187
    Abstract: A semiconductor device has an n-type buried layer formed by implanting antimony and/or arsenic into the p-type first epitaxial layer at a high dose and low energy, and implanting phosphorus at a low dose and high energy. A thermal drive process diffuses and activates both the heavy dopants and the phosphorus. The antimony and arsenic do not diffuse significantly, maintaining a narrow profile for a main layer of the buried layer. The phosphorus diffuses to provide a lightly-doped layer several microns thick below the main layer. An epitaxial p-type layer is grown over the buried layer.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: July 5, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Sameer P Pendharkar, Binghua Hu, Henry Litzmann Edwards
  • Publication number: 20160149011
    Abstract: A semiconductor device is formed by forming a deep trench in a substrate and a dielectric liner on sidewalls of the deep trench. A first undoped polysilicon layer is formed on the semiconductor device, extending into the deep trench on the dielectric liner, but not filling the deep trench. Dopants are implanted into the first polysilicon layer. A second layer of polysilicon is formed on the first layer of polysilicon. A thermal drive anneal activates and diffuses the dopants. In one version, the dielectric liner is removed at the bottom of the deep trench before the first polysilicon layer is formed, so that the polysilicon in the deep trench provides a contact to the substrate. In another version, the polysilicon in the deep trench is isolated from the substrate by the dielectric liner.
    Type: Application
    Filed: November 26, 2014
    Publication date: May 26, 2016
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Binghua Hu, Sameer P. Pendharkar, Jarvis Benjamin Jacobs
  • Patent number: 9337106
    Abstract: A process for forming at least two different doping levels at the surface of a wafer using one photo resist pattern and implantation process step. A resist layer is developed (but not baked) to form a first resist geometry and a plurality of sublithographic resist geometries. The resist layer is baked causing the sublithographic resist geometries to reflow into a continuous second resist geometry having a thickness less that the first resist geometry. A high energy implant implants dopants through the second resist geometry but not through the first resist geometry. A low energy implant is blocked by both the first and second resist geometries.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: May 10, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Sameer P. Pendharkar, Binghua Hu
  • Patent number: 9293357
    Abstract: The width of a heavily-doped sinker is substantially reduced by forming the heavily-doped sinker to lie in between a number of closely-spaced trench isolation structures, which have been formed in a semiconductor material. During drive-in, the closely-spaced trench isolation structures significantly limit the lateral diffusion.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: March 22, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Binghua Hu, Sameer Pendharkar, Guru Mathur, Takehito Tamura
  • Publication number: 20150340357
    Abstract: An ESD cell includes an n+ buried layer (NBL) within a p-epi layer on a substrate. An outer deep trench isolation ring (outer DT ring) includes dielectric sidewalls having a deep n-type diffusion (DEEPN diffusion) ring (DEEPN ring) contacting the dielectric sidewall extending downward to the NBL. The DEEPN ring defines an enclosed p-epi region. A plurality of inner DT structures are within the enclosed p-epi region having dielectric sidewalls and DEEPN diffusions contacting the dielectric sidewalls extending downward from the topside surface to the NBL. The inner DT structures have a sufficiently small spacing with one another so that adjacent DEEPN diffusion regions overlap to form continuous wall of n-type material extending from a first side to a second side of the outer DT ring dividing the enclosed p-epi region into a first and second p-epi region. The first and second p-epi region are connected by the NBL.
    Type: Application
    Filed: May 15, 2015
    Publication date: November 26, 2015
    Inventors: HENRY LITZMANN EDWARDS, AKRAM A. SALMAN, BINGHUA HU
  • Publication number: 20150325577
    Abstract: An integrated circuit containing a first plurality of MOS transistors operating in a low voltage range, and a second plurality of MOS transistors operating in a mid voltage range, may also include a high-voltage MOS transistor which operates in a third voltage range significantly higher than the low and mid voltage ranges, for example 20 to 30 volts. The high-voltage MOS transistor has a closed loop configuration, in which a drain region is surrounded by a gate, which is in turn surrounded by a source region, so that the gate does not overlap field oxide. The integrated circuit may include an n-channel version of the high-voltage MOS transistor and/or a p-channel version of the high-voltage MOS transistor. Implanted regions of the n-channel version and the p-channel version are formed concurrently with implanted regions in the first and second pluralities of MOS transistors.
    Type: Application
    Filed: July 20, 2015
    Publication date: November 12, 2015
    Inventors: Binghua Hu, Pinghai Hao, Sameer Pendharkar, Seetharaman Sridhar, Jarvis Jacobs
  • Publication number: 20150311281
    Abstract: A semiconductor device has an n-type buried layer formed by implanting antimony and/or arsenic into the p-type first epitaxial layer at a high dose and low energy, and implanting phosphorus at a low dose and high energy. A thermal drive process diffuses and activates both the heavy dopants and the phosphorus. The antimony and arsenic do not diffuse significantly, maintaining a narrow profile for a main layer of the buried layer. The phosphorus diffuses to provide a lightly-doped layer several microns thick below the main layer. An epitaxial p-type layer is grown over the buried layer.
    Type: Application
    Filed: November 26, 2014
    Publication date: October 29, 2015
    Applicant: Texas Instruments Incorporated
    Inventors: Sameer P. Pendharkar, Binghua Hu, Henry Litzmann Edwards
  • Publication number: 20150270391
    Abstract: The density of a transistor array is increased by forming one or more deep trench isolation structures in a semiconductor material. The deep trench isolation structures laterally surround the transistors in the array. The deep trench isolation structures limit the lateral diffusion of dopants and the lateral movement of charge carriers.
    Type: Application
    Filed: June 4, 2015
    Publication date: September 24, 2015
    Inventors: Takehito Tamura, Binghua Hu, Sameer Pendharkar, Guru Mathur
  • Patent number: 9117687
    Abstract: An integrated circuit containing a first plurality of MOS transistors operating in a low voltage range, and a second plurality of MOS transistors operating in a mid voltage range, may also include a high-voltage MOS transistor which operates in a third voltage range significantly higher than the low and mid voltage ranges, for example 20 to 30 volts. The high-voltage MOS transistor has a closed loop configuration, in which a drain region is surrounded by a gate, which is in turn surrounded by a source region, so that the gate does not overlap field oxide. The integrated circuit may include an n-channel version of the high-voltage MOS transistor and/or a p-channel version of the high-voltage MOS transistor. Implanted regions of the n-channel version and the p-channel version are formed concurrently with implanted regions in the first and second pluralities of MOS transistors.
    Type: Grant
    Filed: October 29, 2012
    Date of Patent: August 25, 2015
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Binghua Hu, Pinghai Hao, Sameer Pendharkar, Seetharaman Sridhar, Jarvis Jacobs
  • Publication number: 20150214096
    Abstract: The width of a heavily-doped sinker is substantially reduced by forming the heavily-doped sinker to lie in between a number of closely-spaced trench isolation structures, which have been formed in a semiconductor material. During drive-in, the closely-spaced trench isolation structures significantly limit the lateral diffusion.
    Type: Application
    Filed: April 9, 2015
    Publication date: July 30, 2015
    Inventors: Binghua HU, Sameer PENDHARKAR, Guru MATHUR, Takehito TAMURA
  • Patent number: 9076760
    Abstract: A junction field-effect transistor (JFET) includes a substrate having a first-type semiconductor surface including a topside surface, and a top gate of a second-type formed in the semiconductor surface. A first-type drain and a first-type source are formed on opposing sides of the top gate. A first deep trench isolation region has an inner first trench wall and an outer first trench wall surrounding the top gate, the drain and the source, and extends vertically to a deep trench depth from the topside surface. A second-type sinker formed in semiconductor surface extends laterally outside the outer first trench wall. The sinker extends vertically from the topside surface to a second-type deep portion which is both below the deep trench depth and laterally inside the inner first trench wall to provide a bottom gate.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: July 7, 2015
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Binghua Hu, Pinghai Hao, Sameer Pendharkar