Patents by Inventor Bing-Rong Wu

Bing-Rong Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8333893
    Abstract: A filtration separation method for waste resin containing highly radioactive uranium powder and device thereof is mainly used for the waste resin after water treatment process in a nuclear facility. The uranium powder contained in the waste resin is highly radioactive. Thus, prior to the treatment of the waste resin, it is necessary to filter and separate the highly radioactive uranium powder to reduce the radioactivity. It is to put the uranium powder containing waste resin into an underwater holding tank and withdraw the waste resin by an underwater pump into a uranium powder filtration box. Then the uranium powder filtration box is lifted by a hoist to move to an underwater ultrasonic cleaner. High-pressure water flushing is applied and followed by underwater ultrasonic cleaning. Then the cleaning water (containing precipitated uranium powder) from the ultrasonic cleaner is drained to uranium powder collection device.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: December 18, 2012
    Assignee: Institute of Nuclear Energy Research
    Inventors: Kuo-Yuan Chang, Ling-Huan Chiao, Chin-Teng Hsu, Chin-Chun Chu Ko, Bing-Rong Wu
  • Patent number: 8100590
    Abstract: The main objective of the present invention is to provide maintenance mechanism for lighting equipment in a closed space of high radiation activity, which comprises a passage, a lamp base, a multi-section slide rail, a lighting handle, a stainless steel fixation plate, a lead glass lamp guard and a convex lead plug. On the top side of the passage there is a multi-section slide rail with the lamp base attached to move the lamp. The maintenance hole at the end of the passage has a convex lead plug and a stainless steel fixation plate. When the hole closes, the convex lead plug is locked to the lead plug positioning screw under the stainless steel fixation plate; while the maintenance hole opens, on the top right and top left of the stainless steel fixation plate there is a L-shaped short iron plate and a L-shaped long iron plate respectively. On the L-shaped long iron plate there is an axial screw as the axis for the convex lead plug to move and rotate.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: January 24, 2012
    Assignee: Institute of Nuclear Energy Research
    Inventors: Chi-Wen Huang, Hsin-Chi Chu, Bing-Rong Wu
  • Publication number: 20110026912
    Abstract: The main objective of the present invention is to provide maintenance mechanism for lighting equipment in a closed space of high radiation activity, which comprises a passage, a lamp base, a multi-section slide rail, a lighting handle, a stainless steel fixation plate, a lead glass lamp guard and a convex lead plug. On the top side of the passage there is a multi-section slide rail with the lamp base attached to move the lamp. The maintenance hole end of the passage has a convex lead plug and a stainless steel fixation plate. When the hole closes, the convex lead plug is locked to the lead plug positioning screw under the stainless steel fixation plate; while the maintenance hole opens, on the top right and top left of the stainless steel fixation plate there is a L-shaped short iron plate and a L-shaped long iron plate respectively. On the L-shaped long iron plate there is an axial screw as the axis for the convex lead plug to move and rotate.
    Type: Application
    Filed: July 31, 2009
    Publication date: February 3, 2011
    Inventors: Chi-Wen Huang, Hsin-Chi Chu, Bing-Rong Wu
  • Publication number: 20110024364
    Abstract: A filtration separation method for waste resin containing highly radioactive uranium powder and device thereof is mainly used for the waste resin after water treatment process in a nuclear facility. The uranium powder contained in the waste resin is highly radioactive. Thus, prior to the treatment of the waste resin, it is necessary to filter and separate the highly radioactive uranium powder to reduce the radioactivity. It is to put the uranium powder containing waste resin into an underwater holding tank and withdraw the waste resin by an underwater pump into a uranium powder filtration box. Then the uranium powder filtration box is lifted by a hoist to move to an underwater ultrasonic cleaner. High-pressure water flushing is applied and followed by underwater ultrasonic cleaning. Then the cleaning water (containing precipitated uranium powder) from the ultrasonic cleaner is drained to uranium powder collection device.
    Type: Application
    Filed: July 31, 2009
    Publication date: February 3, 2011
    Inventors: Kuo-Yuan Chang, Ling-Huan Chiao, Chin-Teng Hsu, Chin-Chun Chu Ko, Bing-Rong Wu