Patents by Inventor Binoy SHAH

Binoy SHAH has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12355492
    Abstract: Described herein are wavelength division multiplexing (WDM) transceivers configured to support fast, bidirectional communication over optical channels. An optical transceiver comprises a transmitter, a receiver, an input/output (I/O) port and an optical interleaver. The transmitter comprises a first bus waveguide and a plurality of optical modulators coupled to the first bus waveguide, each of the optical modulators being resonant at a respective wavelengths in a first wavelength set. The receiver comprises a second bus waveguide and a plurality of optical filters coupled to the second bus waveguide, each of the optical filters being resonant at a respective wavelength in a second wavelength set. The (I/O) port is coupled to an optical channel.
    Type: Grant
    Filed: September 25, 2024
    Date of Patent: July 8, 2025
    Assignee: Lightmatter, Inc.
    Inventors: Kuang Liu, Binoy Shah, Sandeep Sane, Jessie Rosenberg, Nikhil Kumar, Anthony Kopa, Carlos Dorta-Quinones, Steven Klinger, Darius Bunandar, Nicholas C. Harris, Srinivasan Ashwyn Srinivasan, Elliot Greenwald
  • Publication number: 20250175260
    Abstract: Photonic interposers that enable low-power, high-bandwidth inter-chip (e.g., board-level and/or rack-level) as well as intra-chip communication are described. Described herein are techniques, architectures and processes that improve upon the performance of conventional computers. Some embodiments provide photonic interposers that use photonic tiles, where each tile includes programmable photonic circuits that can be programmed based on the needs of a particular computer architecture. Some tiles are instantiations of a common template tile that are stitched together in a 1D or a 2D arrangement. Some embodiments described herein provide a programmable physical network designed to connect pairs of tiles together with photonic links.
    Type: Application
    Filed: January 17, 2025
    Publication date: May 29, 2025
    Applicant: Lightmatter, Inc.
    Inventors: Mykhailo Tymchenko, Bradford Turcott, Robert Turner, Binoy Shah, Shashank Gupta, James Carr, Ajay Joshi, Nicholas C. Harris, Darius Bunandar
  • Publication number: 20250105921
    Abstract: Described herein are wavelength division multiplexing (WDM) transceivers configured to support fast, bidirectional communication over optical channels. An optical transceiver comprises a transmitter, a receiver, an input/output (I/O) port and an optical interleaver. The transmitter comprises a first bus waveguide and a plurality of optical modulators coupled to the first bus waveguide, each of the optical modulators being resonant at a respective wavelengths in a first wavelength set. The receiver comprises a second bus waveguide and a plurality of optical filters coupled to the second bus waveguide, each of the optical filters being resonant at a respective wavelength in a second wavelength set. The (I/O) port is coupled to an optical channel.
    Type: Application
    Filed: September 25, 2024
    Publication date: March 27, 2025
    Applicant: Lightmatter, Inc.
    Inventors: Kuang Liu, Binoy Shah, Sandeep Sane, Jessie Rosenberg, Nikhil Kumar, Anthony Kopa, Carlos Dorta-Quinones, Steven Klinger, Darius Bunandar, Nicholas C. Harris, Srinivasan Ashwyn Srinivasan, Elliot Greenwald
  • Patent number: 12237871
    Abstract: Photonic interposers that enable low-power, high-bandwidth inter-chip (e.g., board-level and/or rack-level) as well as intra-chip communication are described. Described herein are techniques, architectures and processes that improve upon the performance of conventional computers. Some embodiments provide photonic interposers that use photonic tiles, where each tile includes programmable photonic circuits that can be programmed based on the needs of a particular computer architecture. Some tiles are instantiations of a common template tile that are stitched together in a 1D or a 2D arrangement. Some embodiments described herein provide a programmable physical network designed to connect pairs of tiles together with photonic links.
    Type: Grant
    Filed: March 27, 2023
    Date of Patent: February 25, 2025
    Assignee: Lightmatter, Inc.
    Inventors: Mykhailo Tymchenko, Bradford Turcott, Robert Turner, Binoy Shah, Shashank Gupta, James Carr, Ajay Joshi, Nicholas C. Harris, Darius Bunandar
  • Publication number: 20240264395
    Abstract: Provided herein are optical fiber arrays and optical assemblies included optical fiber arrays. The optical fiber array includes a fiber array chip that has first optical connections disposed on a first edge of the fiber array chip and second optical connections disposed on a second edge of the fiber array chip. Optical fibers are coupled to the first optical connections. Active devices (e.g., photonic and/or electronic devices) are disposed on the fiber array chip. The optical fiber array is removably, optically couplable to another optical component such as a photonic integrated circuit.
    Type: Application
    Filed: February 5, 2024
    Publication date: August 8, 2024
    Applicant: Lightmatter, Inc.
    Inventors: Nicholas C. Harris, Jessie Rosenberg, Chian-min Richard Ho, Sandeep Sane, Binoy Shah, Shashank Gupta, Darius Bunandar
  • Publication number: 20230388024
    Abstract: Photonic interposers that enable low-power, high-bandwidth inter-chip (e.g., board-level and/or rack-level) as well as intra-chip communication are described. Described herein are techniques, architectures and processes that improve upon the performance of conventional computers. Some embodiments provide photonic interposers that use photonic tiles, where each tile includes programmable photonic circuits that can be programmed based on the needs of a particular computer architecture. Some tiles are instantiations of a common template tile that are stitched together in a 1D or a 2D arrangement. Some embodiments described herein provide a programmable physical network designed to connect pairs of tiles together with photonic links.
    Type: Application
    Filed: March 27, 2023
    Publication date: November 30, 2023
    Applicant: Lightmatter, Inc.
    Inventors: Mykhailo Tymchenko, Bradford Turcott, Robert Turner, Binoy Shah, Shashank Gupta, James Carr, Ajay Joshi, Nicholas C. Harris, Darius Bunandar
  • Publication number: 20130105993
    Abstract: There is set forth herein a semiconductor assembly including an integrated circuit and a set of springs extending from the integrated circuit that can be adapted for connection to an external article. The external article can be e.g. an integrated circuit or a printed circuit board. On connection of the semiconductor assembly to an external article there can be defined a semiconductor assembly comprising the integrated circuit the set of springs and the external article. The set of springs can be metal nanospring array can formed by GLAD (Glancing angle deposition) process. In one embodiment, the nanospring array can be GLAD formed on a substrate and then applied to the integrated circuit. In one embodiment, the nanospring array can be GLAD formed on the integrated circuit.
    Type: Application
    Filed: October 28, 2011
    Publication date: May 2, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Raj BAHADUR, David SHADDOCK, Binoy SHAH
  • Publication number: 20040106208
    Abstract: The present invention provides for a method of monitoring the concentration of a sulfate salt present in a solution. In accordance with this aspect of the present invention, the concentration of sulfate salt present in the solution is monitored by titrating a known concentration of a barium salt solution with a test sample of the solution containing an unknown amount of sulfate salt under conductivity titration conditions.
    Type: Application
    Filed: December 2, 2002
    Publication date: June 3, 2004
    Inventors: Peter M. Robertson, Binoi Shah