Patents by Inventor Bipin Dama

Bipin Dama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10725254
    Abstract: A high density interconnect arrangement takes the form of a backplane-pluggable card, with electrical connections formed along a single (pluggable) edge and all remaining connections provided via optical fibers. An exemplary interconnect arrangement also includes on-board optical sources and silicon photonic-based circuitry for providing optical transceiver functionality. Passively aligned fiber arrays are utilized to provide I/O connections to external elements, as well as between laser sources and on-board silicon photonics.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: July 28, 2020
    Assignee: Aayuna Inc.
    Inventors: Kalpendu Shastri, Anujit Shastri, Soham Pathak, Bipin Dama, Alan Leonhartsberger, Rao Yelamarty
  • Publication number: 20190086618
    Abstract: A high density interconnect arrangement takes the form of a backplane-pluggable card, with electrical connections formed along a single (pluggable) edge and all remaining connections provided via optical fibers. An exemplary interconnect arrangement also includes on-board optical sources and silicon photonic-based circuitry for providing optical transceiver functionality. Passively aligned fiber arrays are utilized to provide I/O connections to external elements, as well as between laser sources and on-board silicon photonics.
    Type: Application
    Filed: September 19, 2018
    Publication date: March 21, 2019
    Applicant: Aayuna Inc.
    Inventors: Kalpendu Shastri, Anujit Shastri, Soham Pathak, Bipin Dama, Alan Leonhartsberger, Rao Yelamarty
  • Patent number: 10209464
    Abstract: An optical transmitter may include a chip stack that includes an electrical IC that is mounted using solder balls to a photonic chip. These solder connections permit the electrical IC and the photonic chip to communicate. In addition, the transmitter may include a PCB coupled to the stack so that electrical signals in the PCB are transmitted to the IC and photonic chip (and vice versa). Instead of coupling the PCB to the stack using wire bonds attached to pads on a surface of the photonic chip, at least a portion of the PCB is disposed between the photonic chip and electrical IC. The PCB may also include bond pads used to form a direct solder connection to the electrical IC. As such, the electrical IC may include direct solder connections to both the PCB and the photonic chip.
    Type: Grant
    Filed: October 17, 2014
    Date of Patent: February 19, 2019
    Assignee: Cisco Technology, Inc.
    Inventors: Stefan Martin Pfnuer, Matthew Joseph Traverso, Bipin Dama
  • Patent number: 9793902
    Abstract: Embodiments herein describe a reference-less CDR circuit that receives electrical signals that may have been transmitted along either an electrical or optical interconnect which are then processed to identify the original data. To do so, the CDR circuit includes a frequency locking loop (FLL) and a phase locking loop (PLL) which generate control signals for a voltage controlled oscillator (VCO). In one embodiment, the FLL generates a coarse adjustment signal which the VCO uses to output a recovered clock that substantially matches the frequency of the received electrical signal. The PLL, on the other hand, generates a fine adjustment signal which the VCO uses to make small adjustments (e.g., half cycle phase shifts) to the recovered clock. The recovered clock outputted by the VCO is then fed back and used as an input in both the FLL and the PLL.
    Type: Grant
    Filed: February 19, 2016
    Date of Patent: October 17, 2017
    Assignee: Cisco Technology, Inc.
    Inventors: Kadaba Lakshmikumar, Mark Y. Tse, Bibhu Das, Bipin Dama
  • Publication number: 20170244416
    Abstract: Embodiments herein describe a reference-less CDR circuit that receives electrical signals that may have been transmitted along either an electrical or optical interconnect which are then processed to identify the original data. To do so, the CDR circuit includes a frequency locking loop (FLL) and a phase locking loop (PLL) which generate control signals for a voltage controlled oscillator (VCO). In one embodiment, the FLL generates a coarse adjustment signal which the VCO uses to output a recovered clock that substantially matches the frequency of the received electrical signal. The PLL, on the other hand, generates a fine adjustment signal which the VCO uses to make small adjustments (e.g., half cycle phase shifts) to the recovered clock. The recovered clock outputted by the VCO is then fed back and used as an input in both the FLL and the PLL.
    Type: Application
    Filed: February 19, 2016
    Publication date: August 24, 2017
    Inventors: Kadaba LAKSHMIKUMAR, Mark Y. TSE, Bibhu DAS, Bipin DAMA
  • Patent number: 9575266
    Abstract: An opto-electronic assembly is provided comprising a substrate (generally of silicon or glass) for supporting a plurality of interconnected optical and electrical components. A layer of sealing material is disposed to outline a defined peripheral area of the substrate. A molded glass lid is disposed over and bonded to the substrate, where the molded glass lid is configured to create a footprint that matches the defined peripheral area of the substrate. The bottom surface of the molded glass lid includes a layer of bonding material that contacts the substrate's layer of sealing material upon contact, creating a bonded assembly. In one form, a wafer level assembly process is proposed where multiple opto-electronic assemblies are disposed on a silicon wafer and multiple glass lids are molded in a single sheet of glass that is thereafter bonded to the silicon wafer.
    Type: Grant
    Filed: April 15, 2015
    Date of Patent: February 21, 2017
    Assignee: Cisco Technology, Inc.
    Inventors: Kishor Desai, Ravinder Kachru, Vipulkumar Patel, Bipin Dama, Kalpendu Shastri, Soham Pathak
  • Patent number: 9435965
    Abstract: An apparatus for providing single mode optical signal coupling between an opto-electronic transceiver and a single mode optical fiber array takes the form of a lens array and a ferrule component. The lens array includes a plurality of separate lens element disposed to intercept a like plurality of single mode optical output signal from the opto-electronic transceiver and provide as an output a focused version thereof. The ferrule component includes a plurality of single mode fiber stubs that are passively aligned with the lens array and support the transmission of the focused, single mode optical output signals towards the associated single mode optical fiber array.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: September 6, 2016
    Assignee: Cisco Technology, Inc.
    Inventors: Chris Kiyoshi Togami, Soham Pathak, Kalpendu Shastri, Bipin Dama, Vipulkumar Patel, Ravinder Kachru, Kishor Desai
  • Patent number: 9343450
    Abstract: A wafer scale implementation of an opto-electronic transceiver assembly process utilizes a silicon wafer as an optical reference plane and platform upon which all necessary optical and electronic components are simultaneously assembled for a plurality of separate transceiver modules. In particular, a silicon wafer is utilized as a “platform” (interposer) upon which all of the components for a multiple number of transceiver modules are mounted or integrated, with the top surface of the silicon interposer used as a reference plane for defining the optical signal path between separate optical components. Indeed, by using a single silicon wafer as the platform for a large number of separate transceiver modules, one is able to use a wafer scale assembly process, as well as optical alignment and testing of these modules.
    Type: Grant
    Filed: May 13, 2014
    Date of Patent: May 17, 2016
    Assignee: CISCO TECHNOLOGY, INC.
    Inventors: Kalpendu Shastri, Vipulkumar Patel, Mark Webster, Prakash Gothoskar, Ravinder Kachru, Soham Pathak, Rao V. Yelamarty, Thomas Daugherty, Bipin Dama, Kaushik Patel, Kishor Desai
  • Publication number: 20160109668
    Abstract: An optical transmitter may include a chip stack that includes an electrical IC that is mounted using solder balls to a photonic chip. These solder connections permit the electrical IC and the photonic chip to communicate. In addition, the transmitter may include a PCB coupled to the stack so that electrical signals in the PCB are transmitted to the IC and photonic chip (and vice versa). Instead of coupling the PCB to the stack using wire bonds attached to pads on a surface of the photonic chip, at least a portion of the PCB is disposed between the photonic chip and electrical IC. The PCB may also include bond pads used to form a direct solder connection to the electrical IC. As such, the electrical IC may include direct solder connections to both the PCB and the photonic chip.
    Type: Application
    Filed: October 17, 2014
    Publication date: April 21, 2016
    Inventors: Stefan Martin PFNUER, Matthew Joseph TRAVERSO, Bipin DAMA
  • Patent number: 9235019
    Abstract: An apparatus for providing self-aligned optical coupling between an opto-electronic substrate and a fiber array, where the substrate is enclosed by a transparent lid such that the associated optical signals enter and exit the arrangement through the transparent lid. The apparatus takes the form of a two-part connectorized fiber array assembly where the two pieces uniquely mate to form a self-aligned configuration. A first part, in the form of a plate, is attached to the transparent lid in the area where the optical signals pass through. The first plate includes a central opening with inwardly-tapering sidewalls surrounding its periphery. A second plate is also formed to include a central opening and has a lower protrusion with inwardly-tapering sidewalls that mate with the inwardly-tapering sidewalls of the first plate to form the self-aligned connectorized fiber array assembly. The fiber array is then attached to the second plate in a self-aligned fashion.
    Type: Grant
    Filed: September 26, 2014
    Date of Patent: January 12, 2016
    Assignee: Cisco Technology, Inc.
    Inventors: Kalpendu Shastri, Soham Pathak, Utpal Chakrabarti, Vipulkumar Patel, Bipin Dama, Ravinder Kachru, Kishor Desai
  • Patent number: 9209509
    Abstract: A configuration for routing electrical signals between a conventional electronic integrated circuit (IC) and an opto-electronic subassembly is formed as an array of signal paths carrying oppositely-signed signals on adjacent paths to lower the inductance associated with the connection between the IC and the opto-electronic subassembly. The array of signal paths can take the form of an array of wirebonds between the IC and the subassembly, an array of conductive traces formed on the opto-electronic subassembly, or both.
    Type: Grant
    Filed: March 18, 2014
    Date of Patent: December 8, 2015
    Assignee: Cisco Technology, Inc.
    Inventors: Kalpendu Shastri, Bipin Dama, Mark Webster, David Piede
  • Publication number: 20150277068
    Abstract: An opto-electronic assembly is provided comprising a substrate (generally of silicon or glass) for supporting a plurality of interconnected optical and electrical components. A layer of sealing material is disposed to outline a defined peripheral area of the substrate. A molded glass lid is disposed over and bonded to the substrate, where the molded glass lid is configured to create a footprint that matches the defined peripheral area of the substrate. The bottom surface of the molded glass lid includes a layer of bonding material that contacts the substrate's layer of sealing material upon contact, creating a bonded assembly. In one form, a wafer level assembly process is proposed where multiple opto-electronic assemblies are disposed on a silicon wafer and multiple glass lids are molded in a single sheet of glass that is thereafter bonded to the silicon wafer.
    Type: Application
    Filed: April 15, 2015
    Publication date: October 1, 2015
    Inventors: Kishor DESAI, Ravinder Kachru, Vipulkumar Patel, Bipin Dama, Kalpendu Shastri, Soham Pathak
  • Patent number: 9052445
    Abstract: An opto-electronic assembly is provided comprising a substrate (generally of silicon or glass) for supporting a plurality of interconnected optical and electrical components. A layer of sealing material is disposed to outline a defined peripheral area of the substrate. A molded glass lid is disposed over and bonded to the substrate, where the molded glass lid is configured to create a footprint that matches the defined peripheral area of the substrate. The bottom surface of the molded glass lid includes a layer of bonding material that contacts the substrate's layer of sealing material upon contact, creating a bonded assembly. In one form, a wafer level assembly process is proposed where multiple opto-electronic assemblies are disposed on a silicon wafer and multiple glass lids are molded in a single sheet of glass that is thereafter bonded to the silicon wafer.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: June 9, 2015
    Assignee: CISCO Technology, Inc.
    Inventors: Kishor Desai, Ravinder Kachru, Vipulkumar Patel, Bipin Dama, Kalpendu Shastri, Soham Pathak
  • Patent number: 9031107
    Abstract: An interposer (support substrate) for an opto-electronic assembly is formed to include a thermally-isolated region where temperature-sensitive devices (such as, for example, laser diodes) may be positioned and operate independent of temperature fluctuations in other areas of the assembly. The thermal isolation is achieved by forming a boundary of dielectric material through the thickness of the interposer, the periphery of the dielectric defining the boundary between the thermally isolated region and the remainder of the assembly. A thermo-electric cooler can be used in conjunction with the temperature-sensitive device(s) to stabilize the operation of these devices.
    Type: Grant
    Filed: October 9, 2014
    Date of Patent: May 12, 2015
    Assignee: Cisco Technology, Inc.
    Inventors: Kalpendu Shastri, Soham Pathak, Vipulkumar Patel, Bipin Dama, Kishor Desai
  • Publication number: 20150023377
    Abstract: An interposer (support substrate) for an opto-electronic assembly is formed to include a thermally-isolated region where temperature-sensitive devices (such as, for example, laser diodes) may be positioned and operate independent of temperature fluctuations in other areas of the assembly. The thermal isolation is achieved by forming a boundary of dielectric material through the thickness of the interposer, the periphery of the dielectric defining the boundary between the thermally isolated region and the remainder of the assembly. A thermo-electric cooler can be used in conjunction with the temperature-sensitive device(s) to stabilize the operation of these devices.
    Type: Application
    Filed: October 9, 2014
    Publication date: January 22, 2015
    Inventors: Kalpendu SHASTRI, Soham PATHAK, Vipulkumar PATEL, Bipin DAMA, Kishor DESAI
  • Publication number: 20150016784
    Abstract: An apparatus for providing self-aligned optical coupling between an opto-electronic substrate and a fiber array, where the substrate is enclosed by a transparent lid such that the associated optical signals enter and exit the arrangement through the transparent lid. The apparatus takes the form of a two-part connectorized fiber array assembly where the two pieces uniquely mate to form a self-aligned configuration. A first part, in the form of a plate, is attached to the transparent lid in the area where the optical signals pass through. The first plate includes a central opening with inwardly-tapering sidewalls surrounding its periphery. A second plate is also formed to include a central opening and has a lower protrusion with inwardly-tapering sidewalls that mate with the inwardly-tapering sidewalls of the first plate to form the self-aligned connectorized fiber array assembly. The fiber array is then attached to the second plate in a self-aligned fashion.
    Type: Application
    Filed: September 26, 2014
    Publication date: January 15, 2015
    Inventors: Kalpendu SHASTRI, Soham PATHAK, Utpal CHAKRABARTI, Vipulkumar PATEL, Bipin DAMA, Ravinder KACHRU, Kishor DESAI
  • Patent number: 8929689
    Abstract: An optical modulator is configured to include multiple modulating sections formed along each arm and create a unary-encoded optical output signal by driving the number of sections required to represent the data value being transmitted (e.g., three sections driven to represent the data value “3”, four sections driven to represent the data value “4”). An auxiliary modulating section, isolated from the optical signal path, is included for creating a path for current flow in situations where only an odd number of modulating sections are required to represent the data. The activation of the auxiliary modulation section minimizes the current imbalance that would otherwise be present along a common node of the arrangement.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: January 6, 2015
    Assignee: Cisco Technology, Inc.
    Inventors: Peter C. Metz, Bipin Dama, Kalpendu Shastri
  • Patent number: 8905632
    Abstract: An interposer (support substrate) for an opto-electronic assembly is formed to include a thermally-isolated region where temperature-sensitive devices (such as, for example, laser diodes) may be positioned and operate independent of temperature fluctuations in other areas of the assembly. The thermal isolation is achieved by forming a boundary of dielectric material through the thickness of the interposer, the periphery of the dielectric defining the boundary between the thermally isolated region and the remainder of the assembly. A thermo-electric cooler can be used in conjunction with the temperature-sensitive device(s) to stabilize the operation of these devices.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: December 9, 2014
    Assignee: Cisco Technology, Inc.
    Inventors: Kalpendu Shastri, Soham Pathak, Vipulkumar Patel, Bipin Dama, Kishor Desai
  • Patent number: 8876410
    Abstract: An apparatus for providing self-aligned optical coupling between an opto-electronic substrate and a fiber array, where the substrate is enclosed by a transparent lid such that the associated optical signals enter and exit the arrangement through the transparent lid. The apparatus takes the form of a two-part connectorized fiber array assembly where the two pieces uniquely mate to form a self-aligned configuration. A first part, in the form of a plate, is attached to the transparent lid in the area where the optical signals pass through. The first plate includes a central opening with inwardly-tapering sidewalls surrounding its periphery. A second plate is also formed to include a central opening and has a lower protrusion with inwardly-tapering sidewalls that mate with the inwardly-tapering sidewalls of the first plate to form the self-aligned connectorized fiber array assembly. The fiber array is then attached to the second plate in a self-aligned fashion.
    Type: Grant
    Filed: January 9, 2013
    Date of Patent: November 4, 2014
    Assignee: Cisco Technology, Inc.
    Inventors: Kalpendu Shastri, Soham Pathak, Utpal Chakrabarti, Vipulkumar Patel, Bipin Dama, Ravinder Kachru, Kishor Desai
  • Publication number: 20140294334
    Abstract: A configuration for routing electrical signals between a conventional electronic integrated circuit (IC) and an opto-electronic subassembly is formed as an array of signal paths carrying oppositely-signed signals on adjacent paths to lower the inductance associated with the connection between the IC and the opto-electronic subassembly. The array of signal paths can take the form of an array of wirebonds between the IC and the subassembly, an array of conductive traces formed on the opto-electronic subassembly, or both.
    Type: Application
    Filed: March 18, 2014
    Publication date: October 2, 2014
    Applicant: Cisco Technology, Inc.
    Inventors: Kalpendu SHASTRI, Bipin DAMA, Mark WEBSTER, David PIEDE