Patents by Inventor Biprodas Dutta

Biprodas Dutta has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9827457
    Abstract: The present invention provides compositions and methods for converting hazardous waste glass into safe and usable material. In particular, the present invention provides compositions and methods for producing ceramic products from toxic-metal-containing waste glass, thereby safely encapsulating the metals and other hazardous components within the ceramic products.
    Type: Grant
    Filed: November 13, 2013
    Date of Patent: November 28, 2017
    Assignee: The Catholic University of America
    Inventors: Hao Gan, Malabika Chaudhuri, Biprodas Dutta, Ian L. Pegg
  • Publication number: 20140073830
    Abstract: The present invention provides compositions and methods for converting hazardous waste glass into safe and usable material. In particular, the present invention provides compositions and methods for producing ceramic products from toxic-metal-containing waste glass, thereby safely encapsulating the metals and other hazardous components within the ceramic products.
    Type: Application
    Filed: November 13, 2013
    Publication date: March 13, 2014
    Applicant: The Catholic University of America
    Inventors: Hao Gan, Malabika Chaudhuri, Biprodas Dutta, Ian L. Pegg
  • Patent number: 8658880
    Abstract: A method of drawing a glass clad wire is provided herein, the method comprising: (i) sealing off one end of a glass tube such that the tube has an open end and a closed end; (ii) introducing a wire material inside the glass tube; (iii) heating a portion of the glass tube such that the glass partially melts to form a first ampoule containing the wire material to be used in a drawing operation; (iv) introducing the first ampoule containing the wire material into a heating device; (v) increasing the temperature within the heating device such that the glass tube is heated enough for it to be drawn and wire material melts; and (vi) drawing the glass clad wire comprising a continuous wire of wire material, wherein the wire material is a metal, semi-metal, alloy, or semiconductor thermoelectrically active material, and wherein the wire diameter is equal to or smaller than about 5 ?m.
    Type: Grant
    Filed: June 12, 2009
    Date of Patent: February 25, 2014
    Assignee: ZT3 Technologies, Inc.
    Inventors: Biprodas Dutta, Ian L. Pegg, Sezhian Annamalai, Rudra P. Bhatta, Jugdersuren Battogtokh
  • Patent number: 8143151
    Abstract: The present invention is directed to an electrical device that comprises a first and a second fiber having a core of thermoelectric material embedded in an electrically insulating material, and a conductor. The first fiber is doped with a first type of impurity, while the second fiber is doped with a second type of impurity. A conductor is coupled to the first fiber to induce current flow between the first and second fibers.
    Type: Grant
    Filed: March 2, 2011
    Date of Patent: March 27, 2012
    Assignee: ZT3 Technologies, Inc.
    Inventor: Biprodas Dutta
  • Patent number: 8057568
    Abstract: A highly porous substrate is provided using an extrusion system. More particularly, the present invention enables the production of a highly porous substrate. Depending on the particular mixture, the present invention enables substrate porosities of about 60% to about 90%, and enables advantages at other porosities, as well. The extrusion system enables the use of a wide variety of fibers and additives, and is adaptable to a wide variety of operating environments and applications. Fibers, which have an aspect ratio greater than 1, are selected according to substrate requirements, and are typically mixed with binders, pore-formers, extrusion aids, and fluid to form a homogeneous extrudable mass. The homogeneous mass is extruded into a green substrate. The more volatile material is preferentially removed from the green substrate, which allows the fibers to form interconnected networks.
    Type: Grant
    Filed: February 20, 2008
    Date of Patent: November 15, 2011
    Assignee: GEO2 Technologies, Inc.
    Inventors: Bilal Zuberi, Sunilkumar C. Pillai, Biprodas Dutta, William M. Carty, Robert G. Lachenauer
  • Publication number: 20110269615
    Abstract: The present invention provides compositions and methods for converting hazardous waste glass into safe and usable material. In particular, the present invention provides compositions and methods for producing ceramic products from toxic-metal-containing waste glass, thereby safely encapsulating the metals and other hazardous components within the ceramic products.
    Type: Application
    Filed: April 27, 2011
    Publication date: November 3, 2011
    Inventors: Hao Gan, Malabika Chaudhuri, Biprodas Dutta, Ian L. Pegg
  • Publication number: 20110165709
    Abstract: The present invention is directed to an electrical device that comprises a first and a second fiber having a core of thermoelectric material embedded in an electrically insulating material, and a conductor. The first fiber is doped with a first type of impurity, while the second fiber is doped with a second type of impurity. A conductor is coupled to the first fiber to induce current flow between the first and second fibers.
    Type: Application
    Filed: March 2, 2011
    Publication date: July 7, 2011
    Applicant: ZT3 Technologies, Inc.
    Inventor: Biprodas Dutta
  • Patent number: 7915683
    Abstract: The present invention is directed to an electrical device that comprises a first and a second fiber having a core of thermoelectric material embedded in an electrically insulating material, and a conductor. The first fiber is doped with a first type of impurity, while the second fiber is doped with a second type of impurity. A conductor is coupled to the first fiber to induce current flow between the first and second fibers.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: March 29, 2011
    Assignee: ZT3 Technologies, Inc.
    Inventor: Biprodas Dutta
  • Patent number: 7862641
    Abstract: A highly porous substrate is provided using an extrusion system. More particularly, the present invention enables the production of a highly porous substrate. Depending on the particular mixture, the present invention enables substrate porosities of about 60% to about 90%, and enables advantages at other porosities, as well. The extrusion system enables the use of a wide variety of fibers and additives, and is adaptable to a wide variety of operating environments and applications. Fibers, which have an aspect ratio greater than 1, are selected according to substrate requirements, and are typically mixed with binders, pore-formers, extrusion aids, and fluid to form a homogeneous extrudable mass. The homogeneous mass is extruded into a green substrate. The more volatile material is preferentially removed from the green substrate, which allows the fibers to form interconnected networks.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: January 4, 2011
    Assignee: GEO2 Technologies, Inc.
    Inventors: Bilal Zuberi, Sunilkumar C. Pillai, Robert G. Lachenauer, Biprodas Dutta, William M. Carty
  • Publication number: 20100270617
    Abstract: The present invention is directed to an electrical device that comprises a first and a second fiber having a core of thermoelectric material embedded in an electrically insulating material, and a conductor. The first fiber is doped with a first type of impurity, while the second fiber is doped with a second type of impurity. A conductor is coupled to the first fiber to induce current flow between the first and second fibers.
    Type: Application
    Filed: June 10, 2010
    Publication date: October 28, 2010
    Inventor: Biprodas Dutta
  • Patent number: 7767564
    Abstract: The present invention is directed to an electrical device that comprises a first and a second fiber having a core of thermoelectric material embedded in an electrically insulating material, and a conductor. The first fiber is doped with a first type of impurity, while the second fiber is doped with a second type of impurity. A conductor is coupled to the first fiber to induce current flow between the first and second fibers.
    Type: Grant
    Filed: August 10, 2007
    Date of Patent: August 3, 2010
    Assignee: ZT3 Technologies, Inc.
    Inventor: Biprodas Dutta
  • Publication number: 20100083996
    Abstract: A method of drawing a glass clad wire is provided herein, the method comprising: (i) sealing off one end of a glass tube such that the tube has an open end and a closed end; (ii) introducing a wire material inside the glass tube; (iii) heating a portion of the glass tube such that the glass partially melts to form a first ampoule containing the wire material to be used in a drawing operation; (iv) introducing the first ampoule containing the wire material into a heating device; (v) increasing the temperature within the heating device such that the glass tube is heated enough for it to be drawn and wire material melts; and (vi) drawing the glass clad wire comprising a continuous wire of wire material, wherein the wire material is a metal, semi-metal, alloy, or semiconductor thermoelectrically active material, and wherein the wire diameter is equal to or smaller than about 5 ?m.
    Type: Application
    Filed: June 12, 2009
    Publication date: April 8, 2010
    Inventors: Biprodas Dutta, Ian L. Pegg, Sezhian Annamalai, Rudra P. Bhatta, Jugdersuren Battogtokh
  • Patent number: 7559215
    Abstract: The present invention provides a method of drawing a thermoelectrically active material in a glass cladding, comprising sealing off one end of a glass tube such that the tube has an open end and a closed end, introducing the thermoelectrically active material inside the glass tube and evacuating the tube by attaching the open end to a vacuum pump, heating a portion of the glass tube such that the glass partially melts and collapses under the vacuum such that the partially melted glass tube provides an ampoule containing the thermoelectric material to be used in a first drawing operation, introducing the ampoule containing the thermoelectric material into a heating device, increasing the temperature within the heating device such that the glass tube melts just enough for it to be drawn and drawing fibers of glass clad thermoelectrically active material.
    Type: Grant
    Filed: December 9, 2005
    Date of Patent: July 14, 2009
    Assignee: ZT3 Technologies, Inc.
    Inventors: Biprodas Dutta, Ian L. Pegg, Robert K. Mohr, Jugdersuren Battogtokh
  • Publication number: 20090173687
    Abstract: A highly porous substrate is provided using an extrusion system. More particularly, the present invention enables the production of a highly porous substrate. Depending on the particular mixture, the present invention enables substrate porosities of about 60% to about 90%, and enables advantages at other porosities, as well. The extrusion system enables the use of a wide variety of fibers and additives, and is adaptable to a wide variety of operating environments and applications. Fibers, which have an aspect ratio greater than 1, are selected according to substrate requirements, and are typically mixed with binders, pore-formers, extrusion aids, and fluid to form a homogeneous extrudable mass. The homogeneous mass is extruded into a green substrate. The more volatile material is preferentially removed from the green substrate, which allows the fibers to form interconnected networks.
    Type: Application
    Filed: March 12, 2009
    Publication date: July 9, 2009
    Applicant: GEO2 TECHNOLOGIES, INC.
    Inventors: Bilal Zuberi, Robert G. Lachenauer, Sunilkumar C. Pillai, William M. Carty, Biprodas Dutta
  • Patent number: 7530239
    Abstract: The present invention provides a method of drawing nanowires, comprising sealing off one end of a glass tube such that the tube has an open end and a closed end, introducing a nanowire material inside the glass tube and evacuating the tube by attaching the open end to a vacuum pump, heating a portion of the glass tube such that the glass partially melts under the vacuum such that the partially melted glass tube provides an ampoule containing the nanowire material to be used in a first drawing operation, introducing the ampoule containing the nanowire material into a heating device, increasing the temperature within the heating device such that the glass tube melts just enough for it to be drawn and drawing fibers of glass clad nanowire material. The invention further provides a method for bunching together such fibers and redrawing them one or more times to produce arrays of nanowires clad in glass.
    Type: Grant
    Filed: July 12, 2007
    Date of Patent: May 12, 2009
    Assignee: ZT3 Technologies, Inc.
    Inventors: Biprodas Dutta, Ian L. Pegg, Robert K. Mohr, Jugdersuren Battogtokh
  • Publication number: 20080199369
    Abstract: A highly porous substrate is provided using an extrusion system. More particularly, the present invention enables the production of a highly porous substrate. Depending on the particular mixture, the present invention enables substrate porosities of about 60% to about 90%, and enables advantages at other porosities, as well. The extrusion system enables the use of a wide variety of fibers and additives, and is adaptable to a wide variety of operating environments and applications. Fibers, which have an aspect ratio greater than 1, are selected according to substrate requirements, and are typically mixed with binders, pore-formers, extrusion aids, and fluid to form a homogeneous extrudable mass. The homogeneous mass is extruded into a green substrate. The more volatile material is preferentially removed from the green substrate, which allows the fibers to form interconnected networks.
    Type: Application
    Filed: February 20, 2008
    Publication date: August 21, 2008
    Applicant: GEO2 TECHNOLOGIES, INC.
    Inventors: Bilal Zuberi, Robert G. Lachenauer, Sunilkumar C. Pillai, Biprodas Dutta, William M. Carty
  • Publication number: 20080169016
    Abstract: The present invention is directed to an electrical device that comprises a first and a second fiber having a core of thermoelectric material embedded in an electrically insulating material, and a conductor. The first fiber is doped with a first type of impurity, while the second fiber is doped with a second type of impurity. A conductor is coupled to the first fiber to induce current flow between the first and second fibers.
    Type: Application
    Filed: August 10, 2007
    Publication date: July 17, 2008
    Inventor: Biprodas DUTTA
  • Publication number: 20070245774
    Abstract: The present invention provides a method of drawing nanowires, comprising sealing off one end of a glass tube such that the tube has an open end and a closed end, introducing a nanowire material inside the glass tube and evacuating the tube by attaching the open end to a vacuum pump, heating a portion of the glass tube such that the glass partially melts under the vacuum such that the partially melted glass tube provides an ampoule containing the nanowire material to be used in a first drawing operation, introducing the ampoule containing the nanowire material into a heating device, increasing the temperature within the heating device such that the glass tube melts just enough for it to be drawn and drawing fibers of glass clad nanowire material. The invention further provides a method for bunching together such fibers and redrawing them one or more times to produce arrays of nanowires clad in glass.
    Type: Application
    Filed: July 12, 2007
    Publication date: October 25, 2007
    Inventor: Biprodas DUTTA
  • Publication number: 20070131269
    Abstract: The present invention provides high density nanowire arrays in a glassy matrix comprising one or more thermoelectric fibers embedded in an electrically insulating material such that the thermoelectric material exhibits quantum confinement. According to the preferred embodiment of the invention, the thermoelectric material comprises PbTe and the glassy matrix comprises an electrically insulating material comprising a binary, ternary or higher component glass such as pyrex, borosilcate, aluminosilicate, quartz. The glass may also be formed from multiple constituents but not limited to lead oxide, tellurium dioxide and silicon dioxide, alumina, calcium oxide etc.
    Type: Application
    Filed: December 9, 2005
    Publication date: June 14, 2007
    Inventor: Biprodas Dutta
  • Publication number: 20070131266
    Abstract: The present invention provides a method of drawing a thermoelectrically active material in a glass cladding, comprising sealing off one end of a glass tube such that the tube has an open end and a closed end, introducing the thermoelectrically active material inside the glass tube and evacuating the tube by attaching the open end to a vacuum pump, heating a portion of the glass tube such that the glass partially melts and collapses under the vacuum such that the partially melted glass tube provides an ampoule containing the thermoelectric material to be used in a first drawing operation, introducing the ampoule containing the thermoelectric material into a heating device, increasing the temperature within the heating device such that the glass tube melts just enough for it to be drawn and drawing fibers of glass clad thermoelectrically active material.
    Type: Application
    Filed: December 9, 2005
    Publication date: June 14, 2007
    Inventor: Biprodas Dutta