Patents by Inventor Biqin Dong

Biqin Dong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240083763
    Abstract: The present disclosure provides a universal preparation method for in-situ growth of a layered double hydroxide (LDH) layer on a substrate surface, and belongs to the technical field of material synthesis. In the present disclosure, an LDH protective layer is grown in situ on a surface of a substrate by means of electrodeposition combined with hydrothermal treatment. Specifically, a seed crystal layer of the LDH is formed on the substrate surface by the electrodeposition, and then obtained LDH seed crystals are crystallized and grown by Ostwald ripening through the hydrothermal treatment. In this way, the LDH protective layer is formed in which an interlayer anion is a nitrate. The protective layer protects the substrate against corrosion. Moreover, since the interlayer anion is the nitrate, the protective layer can be exchanged with other corrosion-inhibiting anions, and is modifiable.
    Type: Application
    Filed: June 16, 2023
    Publication date: March 14, 2024
    Applicant: SHENZHEN UNIVERSITY
    Inventors: Shuxian HONG, Biqin DONG, Lei ZENG, Feng XING, Peiyu CHEN
  • Patent number: 10830639
    Abstract: Certain examples disclose systems and methods for imaging a target. An example method includes: a) activating a subset of light-emitting molecules in a wide field area of a target using an excitation light; b) capturing one or more images of the light emitted from the subset of the molecules illuminated with the excitation light; c) localizing one or more activated light emitting molecules using one or more single molecule microscopic methods to obtain localization information; d) simultaneously capturing spectral information for the same localized activated light emitting molecules using one or more spectroscopic methods; e) resolving one or more non-diffraction limited images of the area of the target using a combination of the localization and spectral information for the localized activated light emitting molecules; and f) displaying the one or more non-diffraction limited images.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: November 10, 2020
    Assignee: Northwestern University
    Inventors: Ben Urban, Hao F. Zhang, Cheng Sun, Biqin Dong
  • Patent number: 10524664
    Abstract: The present disclosure provides systems and methods for the determining a rate of change of one or more analyte concentrations in a target using non invasive non contact imaging techniques such as OCT. Generally, OCT data is acquired and optical information is extracted from OCT scans to quantitatively determine a flow rate of fluid in the target; angiography is also performed using one or more fast scanning methods to determine a concentration of one or more analytes. Both calculations can provide a means to determine a change in rate of an analyte over time. Example methods and systems of the disclosure may be used in assessing metabolism of a tissue, where oxygen is the analyte detected, or other functional states, and be generally used for the diagnosis, monitoring and treatment of disease.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: January 7, 2020
    Assignees: NORTHWESTERN UNIVERSITY, OPTICENT, INC.
    Inventors: Wenzhong Liu, Lian Duan, Hao F. Zhang, Kieren J. Patel, Hao Li, Biqin Dong, Amani A. Fawzi
  • Publication number: 20190025476
    Abstract: Systems and methods to generate spatially coherent electromagnetic radiation are disclosed. An example method includes receiving two or more incident wavelengths of electromagnetic radiation; applying the two or more incident wavelengths of electromagnetic radiation to an array of features; generating two or more spatially coherent optical resonating modes through the interaction of the one or more incident wavelengths of electromagnetic radiation and the array of features; and coupling the two or more spatially coherent optical resonating modes to two or more spatially coherent propagating wavelengths of electromagnetic radiation, wherein the spatially coherent propagating wavelengths of electromagnetic radiation are identical to the two or more incident wavelengths of electromagnetic radiation.
    Type: Application
    Filed: January 9, 2017
    Publication date: January 24, 2019
    Applicant: Northwestern University
    Inventors: Cheng Sun, Hao F. Zhang, Biqin Dong, Wenzhong Liu, Kieren J. Patel
  • Patent number: 9957162
    Abstract: Provided is a ternary inorganic compound crystal having a molecular formula of Ca8Al12P2O31, and a preparation method thereof comprising the following steps: weighing calcium salts, aluminum salts and phosphate respectively according to the molar ratio of calcium, aluminum and phosphorus in the molecular formula Ca8Al12P2O31; calcining at 1550˜1570° C., cooling, and grinding to obtain the ternary inorganic compound crystal. Also provided is an application of the ternary inorganic compound in gelling materials and molecular sieves, nonlinear optical crystals, and photochromic materials.
    Type: Grant
    Filed: June 21, 2016
    Date of Patent: May 1, 2018
    Assignee: SHENZHEN UNIVERSITY
    Inventors: Feng Xing, Ning Zhang, Zhu Ding, Biao Liu, Ningxu Han, Weilun Wang, Dawang Li, Wujian Long, Biqin Dong, Xiaodong Wang
  • Publication number: 20180088048
    Abstract: The devices, methods, and systems of the present disclosure provide for spectroscopic super-resolution microscopic imaging. In some examples, spectroscopic super-resolution microscopic imaging may be referred to or comprise spectroscopic photon localization microscopy (SPLM), a method which may employ the use of extrinsic labels or tags in a test sample suitable for imaging. In some examples spectroscopic super-resolution microscopic or spectroscopic photon localization microscopy (SPLM) may not employ extrinsic labels and be performed using the intrinsic contrast of the test sample or test sample material. Generally, spectroscopic super-resolution microscopic imaging may comprise resolving one or more non-diffraction limited images of an area of a test sample by acquiring both localization information of a subset of molecules using microscopic methods known in the art, and simultaneously or substantially simultaneously, acquiring spectral data about the same or corresponding molecules in the subset.
    Type: Application
    Filed: May 1, 2017
    Publication date: March 29, 2018
    Inventors: Biqin Dong, Janel L. Davis, Cheng Sun, Hao F. Zhang, Kieren J. Patel, Ben Urban, Vadim Backman, Luay Almassalha, Yolanda Stypula-Cyrus, The-Quyen Nguyen
  • Publication number: 20180072624
    Abstract: Disclosed are a microcapsule for self-healing concrete and a preparation method thereof, and a self-healing concrete and a preparation method thereof. The microcapsule comprises a core and a wall, the components of the core comprising a healing agent, microcrystalline cellulose and Tween 80, and a material of the wall being a high-molecular organic material sensitive to stress of cracks. The preparation method for the self-healing concrete comprises steps of: weighing appropriate amounts of cement, sand, water and the above microcapsules, with each cubic meter of concrete containing 0.05 to 0.08 cubic meter of the microcapsules; stirring the cement, sand and microcapsules until uniformly dispersed to obtain a mixture; and pouring the water into the mixture, and stirring uniformly.
    Type: Application
    Filed: March 30, 2016
    Publication date: March 15, 2018
    Applicant: SHENZHEN UNIVERSITY
    Inventor: Biqin DONG
  • Publication number: 20180020922
    Abstract: The present disclosure provides systems and methods for the determining a rate of change of one or more analyte concentrations in a target using non invasive non contact imaging techniques such as OCT. Generally, OCT data is acquired and optical information is extracted from OCT scans to quantitatively determine a flow rate of fluid in the target; angiography is also performed using one or more fast scanning methods to determine a concentration of one or more analytes. Both calculations can provide a means to determine a change in rate of an analyte over time. Example methods and systems of the disclosure may be used in assessing metabolism of a tissue, where oxygen is the analyte detected, or other functional states, and be generally used for the diagnosis, monitoring and treatment of disease.
    Type: Application
    Filed: May 1, 2017
    Publication date: January 25, 2018
    Inventors: Wenzhong Liu, Lian Duan, Hao F. Zhang, Kieren J. Patel, Hao Li, Biqin Dong, Amani A. Fawzi
  • Publication number: 20170307440
    Abstract: Certain examples disclose systems and methods for imaging a target. An example method includes: a) activating a subset of light-emitting molecules in a wide field area of a target using an excitation light; b) capturing one or more images of the light emitted from the subset of the molecules illuminated with the excitation light; c) localizing one or more activated light emitting molecules using one or more single molecule microscopic methods to obtain localization information; d) simultaneously capturing spectral information for the same localized activated light emitting molecules using one or more spectroscopic methods; e) resolving one or more non-diffraction limited images of the area of the target using a combination of the localization and spectral information for the localized activated light emitting molecules; and 0 displaying the one or more non-diffraction limited images.
    Type: Application
    Filed: September 25, 2015
    Publication date: October 26, 2017
    Inventors: Ben Urban, Hao F. Zhang, Cheng Sun, Biqin Dong
  • Publication number: 20160297680
    Abstract: Provided is a ternary inorganic compound crystal having a molecular formula of Ca8Al12P2O31, and a preparation method thereof comprising the following steps: weighing calcium salts, aluminum salts and phosphate respectively according to the molar ratio of calcium, aluminum and phosphorus in the molecular formula Ca8Al12P2O31; calcining at 1550˜1570° C., cooling, and grinding to obtain the ternary inorganic compound crystal. Also provided is an application of the ternary inorganic compound in gelling materials and molecular sieves, nonlinear optical crystals, and photochromic materials.
    Type: Application
    Filed: June 21, 2016
    Publication date: October 13, 2016
    Inventors: Feng Xing, Ning Zhang, Zhu Ding, Biao Liu, Ningxu Han, Weilun Wang, Dawang Li, Wujian Long, Biqin Dong, Xiaodong Wang