Patents by Inventor Birendra Dutt

Birendra Dutt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11444696
    Abstract: Various embodiments of a micro-disc modulator as well as a silicon photonic device and an optoelectronic communication apparatus using the micro-disc modulator are described. In one aspect, a device includes a SOI substrate and a silicon photonic structure formed on a primary surface of the SOI substrate. The semiconductor substrate includes a silicon waveguide and a micro-disc modulator. The micro-disc modulator is adjacent to the silicon waveguide and has a top surface substantially parallel to the primary surface of the SOI substrate. The top surface of the micro-disc modulator includes one or more discontinuities therein. The micro-disc modulator may be a multi junction micro-disc modulator having two vertical p-n junctions with a single resonance frequency to achieve high-speed modulation and low-power consumption.
    Type: Grant
    Filed: July 8, 2014
    Date of Patent: September 13, 2022
    Assignee: PhotonIC International Pte. Ltd.
    Inventors: Birendra Dutt, Ashok Kapoor, Weiwei Song, Raj Rajasekharan
  • Patent number: 9653639
    Abstract: The subject matter disclosed herein relates to formation of silicon germanium devices with tensile strain. Tensile strain applied to a silicon germanium device in fabrication may improve performance of a silicon germanium laser or light detector.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: May 16, 2017
    Assignee: Apic Corporation
    Inventor: Birendra Dutt
  • Patent number: 9495295
    Abstract: A photonics-optimized multi-processor system may include a plurality of processor chips, each of the processor chips comprising at least one input/output (I/O) component. The multi-processor system may also include first and second photonic components. The at least one I/O component of at least one of the processor chips may be configured to directly drive the first photonic component and receive a signal from the second photonic component. A total latency from any one of the processor chips to data at any global memory location may not be dominated by a round trip speed-of-light propagation delay. A number of the processor chips may be at least 10,000, and the processor chips may be packaged into a total volume of no more than 8 m3. A density of the processor chips may be greater than 1,000 chips per cubic meter.
    Type: Grant
    Filed: August 10, 2015
    Date of Patent: November 15, 2016
    Assignee: PHOTONIC INTERNATIONAL PTE. LTD.
    Inventors: Birendra Dutt, Douglas B. Boyle
  • Publication number: 20160314003
    Abstract: A photonics-optimized multi-processor system may include a plurality of processor chips, each of the processor chips comprising at least one input/output (I/O) component. The multi-processor system may also include first and second photonic components. The at least one I/O component of at least one of the processor chips may be configured to directly drive the first photonic component and receive a signal from the second photonic component. A total latency from any one of the processor chips to data at any global memory location may not be dominated by a round trip speed-of-light propagation delay. A number of the processor chips may be at least 10,000, and the processor chips may be packaged into a total volume of no more than 8 m3. A density of the processor chips may be greater than 1,000 chips per cubic meter.
    Type: Application
    Filed: August 10, 2015
    Publication date: October 27, 2016
    Inventors: Birendra Dutt, Douglas B. Boyle
  • Publication number: 20160313760
    Abstract: A photonics-optimized multi-processor system may include a plurality of processor chips, each of the processor chips comprising at least one input/output (I/O) component. The multi-processor system may also include first and second photonic components. The at least one I/O component of at least one of the processor chips may be configured to directly drive the first photonic component and receive a signal from the second photonic component. A total latency from any one of the processor chips to data at any global memory location may not be dominated by a round trip speed-of-light propagation delay. A number of the processor chips may be at least 10,000, and the processor chips may be packaged into a total volume of no more than 8 m3. A density of the processor chips may be greater than 1,000 chips per cubic meter.
    Type: Application
    Filed: August 10, 2015
    Publication date: October 27, 2016
    Inventors: Birendra Dutt, Douglas B. Boyle
  • Publication number: 20160314070
    Abstract: A photonics-optimized multi-processor system may include a plurality of processor chips, each of the processor chips comprising at least one input/output (I/O) component. The multi-processor system may also include first and second photonic components. The at least one I/O component of at least one of the processor chips may be configured to directly drive the first photonic component and receive a signal from the second photonic component. A total latency from any one of the processor chips to data at any global memory location may not be dominated by a round trip speed-of-light propagation delay. A number of the processor chips may be at least 10,000, and the processor chips may be packaged into a total volume of no more than 8 m3. A density of the processor chips may be greater than 1,000 chips per cubic meter.
    Type: Application
    Filed: August 10, 2015
    Publication date: October 27, 2016
    Inventors: Birendra Dutt, Douglas B. Boyle
  • Publication number: 20160314091
    Abstract: A photonics-optimized multi-processor system may include a plurality of processor chips, each of the processor chips comprising at least one input/output (I/O) component. The multi-processor system may also include first and second photonic components. The at least one I/O component of at least one of the processor chips may be configured to directly drive the first photonic component and receive a signal from the second photonic component. A total latency from any one of the processor chips to data at any global memory location may not be dominated by a round trip speed-of-light propagation delay. A number of the processor chips may be at least 10,000, and the processor chips may be packaged into a total volume of no more than 8 m3. A density of the processor chips may be greater than 1,000 chips per cubic meter.
    Type: Application
    Filed: August 10, 2015
    Publication date: October 27, 2016
    Inventors: Birendra Dutt, Douglas B. Boyle
  • Publication number: 20160314088
    Abstract: A photonics-optimized multi-processor system may include a plurality of processor chips, each of the processor chips comprising at least one input/output (I/O) component. The multi-processor system may also include first and second photonic components. The at least one I/O component of at least one of the processor chips may be configured to directly drive the first photonic component and receive a signal from the second photonic component. A total latency from any one of the processor chips to data at any global memory location may not be dominated by a round trip speed-of-light propagation delay. A number of the processor chips may be at least 10,000, and the processor chips may be packaged into a total volume of no more than 8 m3. A density of the processor chips may be greater than 1,000 chips per cubic meter.
    Type: Application
    Filed: August 10, 2015
    Publication date: October 27, 2016
    Inventors: Birendra Dutt, Douglas B. Boyle
  • Publication number: 20160013865
    Abstract: Various embodiments of a micro-disc modulator as well as a silicon photonic device and an optoelectronic communication apparatus using the micro-disc modulator are described. In one aspect, a device includes a SOI substrate and a silicon photonic structure formed on a primary surface of the SOI substrate. The semiconductor substrate includes a silicon waveguide and a micro-disc modulator. The micro-disc modulator is adjacent to the silicon waveguide and has a top surface substantially parallel to the primary surface of the SOI substrate. The top surface of the micro-disc modulator includes one or more discontinuities therein. The micro-disc modulator may be a multi junction micro-disc modulator having two vertical p-n junctions with a single resonance frequency to achieve high-speed modulation and low-power consumption.
    Type: Application
    Filed: July 8, 2014
    Publication date: January 14, 2016
    Inventors: Birendra Dutt, Ashok Kapoor, Weiwei Song, Raj Rajasekharan
  • Publication number: 20140270629
    Abstract: The subject matter disclosed herein relates to a photonic module comprising: a silicon-on-insulator (SOI) wafer; one or more photonic components on the SOI wafer; a plurality of metal pads to receive integrated circuit (IC) chips to be mounted on the SOI wafer; silicon optical waveguides to transfer optical signals among terminals of individual the IC chips, wherein the silicon optical waveguides comprise portions of the SOI wafer; and silica optical waveguides to transfer optical signals among terminals of different the IC chips.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: APIC Corporation
    Inventors: Birendra Dutt, Ashok Kumar Kapoor
  • Publication number: 20140270621
    Abstract: The subject matter disclosed herein relates to a photonic module comprising: a plurality of metal pads to receive CMOS integrated circuit (IC) chips to be mounted on a silicon-on-insulator (SOI) wafer; electrical interface circuits to receive electrical signals from the CMOS IC chips and to modify the electrical signals; optical drivers to receive the modified electrical signals and to convert the modified electrical signals to optical signals; and a photonic layer on the SOI wafer comprising silicon optical waveguides and silica optical waveguides to transmit or receive the optical signals for communication among the CMOS IC chips.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: APIC CORPORATION
    Inventors: Birendra Dutt, Ashok Kumar Kapoor
  • Publication number: 20130202005
    Abstract: The subject matter disclosed herein relates to formation of silicon germanium devices with tensile strain. Tensile strain applied to a silicon germanium device in fabrication may improve performance of a silicon germanium laser or light detector.
    Type: Application
    Filed: February 7, 2012
    Publication date: August 8, 2013
    Applicant: APIC Corporation
    Inventor: Birendra Dutt
  • Patent number: 8052908
    Abstract: A nanophotolithography mask includes a layer of an electrically conductive optically opaque material deposited on a mask substrate in which regular arrays of sub-wavelength apertures are formed. The plasmonic excitation in the layer perforated with the sub-wavelength apertures arrays under the light incident on the mask produces high resolution far-field radiation patterns of sufficient intensity to expose a photoresist on a wafer when propagated to the same. The fill-factor of the mask, i.e., the ratio of the total apertures area to the total mask area, may lead to a significant increase in mask manufacturing throughput by FIB or electron beam “writing”. The mask demonstrates the defect resiliency and ability to imprint coherent clear features of nano dimensions and shapes on the wafers for integrated circuits design.
    Type: Grant
    Filed: May 2, 2008
    Date of Patent: November 8, 2011
    Assignee: University of Maryland
    Inventors: Martin C. Peckerar, Mario Dagenais, Birendra Dutt, John D. Barry, Michael D. Messina, Jr., Yves Ngu
  • Patent number: 8054450
    Abstract: A stepper system for ultra-high resolution nano-lithography employs a photolithographic mask which includes a layer of an electrically conductive optically opaque material in which periodic arrays of sub-wavelength apertures are formed. The plasmonic excitation in the photolithographic mask exposed to the light of the wavelength in the range of 197 nm-248 nm, produces high resolution far-field radiation patterns of sufficient intensity to expose a photoresist on a wafer. The stepper system demonstrates the resiliency to the mask defects and ability to imprint coherent clear features of nano dimensions (45 nm-500 nm) and various shapes on the wafers for integrated circuits design. The stepper system may be adjusted to image the plane of the highest plasmonic field exiting the mask.
    Type: Grant
    Filed: May 2, 2008
    Date of Patent: November 8, 2011
    Assignee: University of Maryland
    Inventors: Martin C. Peckerar, Mario Dagenais, Birendra Dutt, John D. Barry, Michael D. Messina, Jr., Yves Ngu
  • Publication number: 20090201475
    Abstract: A stepper system for ultra-high resolution nano-lithography employs a photolithographic mask which includes a layer of an electrically conductive optically opaque material in which periodic arrays of sub-wavelength apertures are formed. The plasmonic excitation in the photolithographic mask exposed to the light of the wavelength in the range of 197 nm-248 nm, produces high resolution far-field radiation patterns of sufficient intensity to expose a photoresist on a wafer. The stepper system demonstrates the resiliency to the mask defects and ability to imprint coherent clear features of nano dimensions (45 nm-500 nm) and various shapes on the wafers for integrated circuits design. The stepper system may be adjusted to image the plane of the highest plasmonic field exiting the mask.
    Type: Application
    Filed: May 2, 2008
    Publication date: August 13, 2009
    Inventors: MARTIN C. PECKERAR, MARIO DAGENAIS, BIRENDRA DUTT, JOHN D. BARRY, MICHAEL D. MESSINA, JR., YVES NGU
  • Publication number: 20090068570
    Abstract: A nanophotolithography mask includes a layer of an electrically conductive optically opaque material deposited on a mask substrate in which regular arrays of sub-wavelength apertures are formed. The plasmonic excitation in the layer perforated with the sub-wavelength apertures arrays under the light incident on the mask produces high resolution far-field radiation patterns of sufficient intensity to expose a photoresist on a wafer when propagated to the same. The fill-factor of the mask, i.e., the ratio of the total apertures area to the total mask area, may lead to a significant increase in mask manufacturing throughput by FIB or electron beam “writing”. The mask demonstrates the defect resiliency and ability to imprint coherent clear features of nano dimensions and shapes on the wafers for integrated circuits design.
    Type: Application
    Filed: May 2, 2008
    Publication date: March 12, 2009
    Inventors: MARTIN C. PECKERAR, MARIO DAGENAIS, BIRENDRA DUTT, JOHN D. BARRY, MICHAEL D. MESSINA, JR., YVES NGU
  • Patent number: 7215845
    Abstract: An optical interconnect architecture provides three dimensional optical interconnects, with the optical interconnects provided along a plane such as a wafer or a substrate. One or more integrated circuits is provided on a second “electronic” plane that is spaced from the optical interconnect plane. Signals from the circuit on the electronic plane are coupled to the optical interconnect plane using various strategies, including metal or optical interlayer interconnects extending perpendicular to the optical plane. Once on the optical interconnect plane, the signals from the circuits on the electronic plane are propagated optically.
    Type: Grant
    Filed: January 20, 2006
    Date of Patent: May 8, 2007
    Assignee: Apic Corporation
    Inventors: James K. Chan, Birendra Dutt
  • Patent number: 6594409
    Abstract: An optical component is formed on a silicon on insulator (SOI) substrate and has an array waveguide that demultiplexes an input light signal into N channels and provides that light signal to a corresponding set of N waveguide structures formed on a surface of the SOI substrate. The N waveguide structures provide the N channels of light to N optical detectors. Each optical detector is bonded to a surface of a corresponding one of the waveguide structures. The N channels of light pass through the N waveguide structures and are coupled into the N optical detectors so that light from a corresponding channel of the array waveguide is coupled into a corresponding optical detector and converted into an electrical signal.
    Type: Grant
    Filed: April 18, 2001
    Date of Patent: July 15, 2003
    Assignee: APIC Corporation
    Inventors: Birendra Dutt, James Chan
  • Publication number: 20020154847
    Abstract: An optical component is formed on a silicon on insulator (SOI) substrate and has an array waveguide that demultiplexes an input light signal into N channels and provides that light signal to a corresponding set of N waveguide structures formed on a surface of the SOI substrate. The N waveguide structures provide the N channels of light to N optical detectors. Each optical detector is bonded to a surface of a corresponding one of the waveguide structures. The N channels of light pass through the N waveguide structures and are coupled into the N optical detectors so that light from a corresponding channel of the array waveguide is coupled into a corresponding optical detector and converted into an electrical signal.
    Type: Application
    Filed: April 18, 2001
    Publication date: October 24, 2002
    Inventors: Birendra Dutt, James Chan
  • Patent number: 6236483
    Abstract: An optical fiber communications system using spread spectrum code division multiple access techniques to achieve better bandwidth utilization. A transmitting user in the system encodes the optical signal using a first coding mask, and a receiving user decodes the received signal using two decoding masks, all of the masks having lengths N. The first mask is divided into two sections of lengths N/2 each, one of the sections defining a first sub-code of length N/2, while the other section blocks light. Each of the second and third masks is also divided into two sections, which correspond to the two sections of the first mask. The section of the second mask corresponding to the coded section of the first mask has a second code that is identical to the first code, and the section of the second mask corresponding to the blocked section of the first mask is also blocked.
    Type: Grant
    Filed: July 30, 1998
    Date of Patent: May 22, 2001
    Assignee: CodeStream Technologies Corporation
    Inventors: Birendra Dutt, Manouher Naraghi, James K. Chan