Patents by Inventor Birendra P. Bhattarai

Birendra P. Bhattarai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10969236
    Abstract: A system and method of determining a vehicle route based on user-provided trip constraints. The method includes the steps of: receiving user trip parameters for a vehicle trip from a vehicle user via a human-machine interface, wherein the vehicle trip includes a start location and an end location, and wherein the user trip parameters include a nausea reduction option; accessing geographical roadway map data for an area corresponding to the vehicle trip; determining a plurality of potential routes for the vehicle trip based on the user trip parameters and the geographical roadway map data; determining a cumulative nausea index score for each of the potential routes; and selecting one of the potential routes as the vehicle route for the vehicle trip based on the cumulative nausea index score.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: April 6, 2021
    Assignee: GM Global Technology Operations, LLC
    Inventors: Goro Tamai, Birendra P. Bhattarai, Steven A. Tarnowsky
  • Patent number: 10960883
    Abstract: A powertrain system for a vehicle is described, and includes an internal combustion engine that is selectively coupled to a driveline. The engine is configured to operate in a coasting mode, wherein the coasting mode includes operating the powertrain system with the engine in an OFF state and decoupled from the driveline. Devices are configured to monitor an output torque request, vehicle speed, and vehicle operating conditions. An executable instruction set monitors the vehicle speed and the output torque request. The engine is controlled to operate in the coasting mode when the output torque request is within the predetermined torque region and the vehicle speed is greater than a minimum speed threshold. The engine is controlled to discontinue operating in the coasting mode in response to the output torque request being outside the torque region of the vehicle speed being less than a minimum speed threshold.
    Type: Grant
    Filed: September 17, 2018
    Date of Patent: March 30, 2021
    Assignee: GM Global Technology Operations LLC
    Inventors: Goro Tamai, Birendra P Bhattarai, Daniel E Nicholson
  • Publication number: 20200377072
    Abstract: A powertrain system is described and includes an internal combustion engine that is coupled to an electric machine that is electrically connected to a DC power source, and a controller. The controller is operatively connected to the internal combustion engine and the electric machine, and is in communication with the vehicle and the DC power source. Control includes dynamically monitoring vehicle speed and a state of charge (SOC) of the DC power source, and transitioning to operating the electric machine in an alternator emulating mode when the SOC is less than a first SOC threshold. The first SOC threshold is determined based upon the vehicle speed. The DC power source is electrically connected to an on-vehicle auxiliary power system, which includes operating the electric machine in an electric power generating state to generate sufficient electric power to service the auxiliary power system.
    Type: Application
    Filed: May 28, 2019
    Publication date: December 3, 2020
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Kee Y. Kim, Anthony H. Heap, Michael A. Miller, Birendra P. Bhattarai, Joshua F. Pacheco
  • Publication number: 20200191589
    Abstract: A system and method of determining a vehicle route based on user-provided trip constraints. The method includes the steps of: receiving user trip parameters for a vehicle trip from a vehicle user via a human-machine interface, wherein the vehicle trip includes a start location and an end location, and wherein the user trip parameters include a nausea reduction option; accessing geographical roadway map data for an area corresponding to the vehicle trip; determining a plurality of potential routes for the vehicle trip based on the user trip parameters and the geographical roadway map data; determining a cumulative nausea index score for each of the potential routes; and selecting one of the potential routes as the vehicle route for the vehicle trip based on the cumulative nausea index score.
    Type: Application
    Filed: December 13, 2018
    Publication date: June 18, 2020
    Inventors: Goro Tamai, Birendra P. Bhattarai, Steven A. Tarnowsky
  • Publication number: 20200086872
    Abstract: A powertrain system for a vehicle is described, and includes an internal combustion engine that is selectively coupled to a driveline. The engine is configured to operate in a coasting mode, wherein the coasting mode includes operating the powertrain system with the engine in an OFF state and decoupled from the driveline. Devices are configured to monitor an output torque request, vehicle speed, and vehicle operating conditions. An executable instruction set monitors the vehicle speed and the output torque request. The engine is controlled to operate in the coasting mode when the output torque request is within the predetermined torque region and the vehicle speed is greater than a minimum speed threshold. The engine is controlled to discontinue operating in the coasting mode in response to the output torque request being outside the torque region of the vehicle speed being less than a minimum speed threshold.
    Type: Application
    Filed: September 17, 2018
    Publication date: March 19, 2020
    Applicant: GM Global Technology Operations LLC
    Inventors: Goro Tamai, Birendra P Bhattarai, Daniel E Nicholson
  • Patent number: 8761977
    Abstract: A method for optimizing an engine idle speed in a vehicle having an engine, a motor generator unit (MGU), and an energy storage system (ESS) includes determining vehicle operating values, including at least one of: an electrical load of an accessory, a torque capacity of the MGU, a temperature of the MGU, an efficiency of the MGU, and a state of charge (SOC) of the ESS. The method also includes calculating a set of engine speed values using the set of vehicle operating values, and using a controller to command the engine idle speed as a function of the set of engine speed values. A vehicle includes an engine, an ESS, an MGU, and a controller having an algorithm adapted for optimizing an idle speed of the engine as set forth above.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: June 24, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Donald Chan, William L. Aldrich, III, John L. Lahti, Birendra P. Bhattarai, Krunal P. Patel, Ning Jin
  • Patent number: 8731751
    Abstract: A hybrid controller for controlling a hybrid vehicle is set forth. The hybrid vehicle has an engine, an electric motor and an engine controller determining a crankshaft torque. The hybrid controller includes an optimization module determining an electric motor torque, determining an engine torque and communicating the engine torque from the hybrid controller to the engine controller. The hybrid controller also includes a motor control module controlling the electric motor based on the electric motor torque.
    Type: Grant
    Filed: January 19, 2009
    Date of Patent: May 20, 2014
    Inventors: Robert C. Simon, Jr., Christopher E. Whitney, William R. Cawthorne, John L. Lahti, Douglas J. Babcock, Vivek Mehta, Anthony H. Heap, Todd R. Shupe, Cheryl A. Williams, Leonard G. Wozniak, Ning Jin, Birendra P. Bhattarai, James L. Worthing
  • Patent number: 8655532
    Abstract: A method of modifying the charging target for the state-of-charge (SOC) of a hybrid vehicle battery in response to a sudden power draw includes determining that the hybrid vehicle has entered a steep grade environment, adjusting a power management scheme of the hybrid vehicle from a standard charging mode to an aggressive charging mode, and operating the hybrid vehicle operated using the adjusted power management scheme. The charging target may include both an immediate charging target and an ultimate charging target, where the immediate charging target is less than the ultimate charging target, and where adjusting a power management scheme from a standard charging mode to an aggressive charging mode includes increasing the immediate charging target.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: February 18, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Birendra P. Bhattarai, Kevin A. Dietrich, David W. Wright, Kee Yong Kim
  • Patent number: 8538644
    Abstract: A minimum torque module selectively determines a first minimum propulsion torque based on second and third minimum propulsion torques when a torque converter clutch is in unlocked and locked states, respectively. A zero pedal torque module selectively sets a zero pedal torque equal to the first minimum propulsion torque. A pedal request module determines a pedal torque request based on an accelerator pedal position, a vehicle speed, and the zero pedal torque. A driver request module determines a driver axle torque request based on the pedal torque request. A shaping module selectively shapes the driver axle torque request into a shaped driver axle torque request. A conversion module converts the first minimum propulsion torque into a minimum axle torque. A final driver request module sets a final driver axle torque request equal to a greater of the shaped driver axle torque request and the minimum axle torque.
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: September 17, 2013
    Inventors: Christopher E. Whitney, Robert C. Simon, Jr., William L. Aldrich, III, Jun Lu, Birendra P. Bhattarai, Adam J Heisel, Ning Jin
  • Publication number: 20130006458
    Abstract: A method of modifying the charging target for the state-of-charge (SOC) of a hybrid vehicle battery in response to a sudden power draw includes determining that the hybrid vehicle has entered a steep grade environment, adjusting a power management scheme of the hybrid vehicle from a standard charging mode to an aggressive charging mode, and operating the hybrid vehicle operated using the adjusted power management scheme. The charging target may include both an immediate charging target and an ultimate charging target, where the immediate charging target is less than the ultimate charging target, and where adjusting a power management scheme from a standard charging mode to an aggressive charging mode includes increasing the immediate charging target.
    Type: Application
    Filed: June 30, 2011
    Publication date: January 3, 2013
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Birendra P. Bhattarai, Kevin A. Dietrich, David W. Wright, Kee Yong Kim
  • Patent number: 8261864
    Abstract: A control system for a hybrid powertrain includes an engine start detector that detects when an engine of the hybrid powertrain is activated via an electric motor during an auto start. An electric motor speed monitor determines a first speed of the electric motor for a first time and a second speed of the electric motor for a second time after detection of the engine in an active state. A control module determines a rate of change in speed of the electric motor based on the first speed and the second speed. The control module adjusts torque output of the electric motor during startup of the engine and based on the rate of change in speed.
    Type: Grant
    Filed: May 15, 2009
    Date of Patent: September 11, 2012
    Inventors: Birendra P. Bhattarai, Bon Ho Bae, Leah Dunbar
  • Patent number: 8157035
    Abstract: A method of operating an engine control system includes reducing pressures within cylinders of an engine based on an auto start command signal including: receiving a torque request signal; calculating a powertrain output torque; and controlling air flow to the engine based on the powertrain output torque. During a startup of the engine: electric motor torque is increased to a predetermined level and reduced to increase a current speed of the engine; combustion torque of the engine is activated and increased after the current speed is within a predetermined range and a manifold absolute pressure is less than a predetermined level; and the electric motor torque is increased based on a crankshaft output torque signal to increase a crankshaft output torque subsequent to the reducing of the electric motor torque and while performing the activating of the combustion torque.
    Type: Grant
    Filed: January 13, 2009
    Date of Patent: April 17, 2012
    Inventors: Christopher E. Whitney, Steven G. Bryde, R. Travis Schwenke, John L. Lahti, Ning Jin, Birendra P. Bhattarai, Cheryl A. Williams, James B Nicholson
  • Publication number: 20110257854
    Abstract: A minimum torque module selectively determines a first minimum propulsion torque based on second and third minimum propulsion torques when a torque converter clutch is in unlocked and locked states, respectively. A zero pedal torque module selectively sets a zero pedal torque equal to the first minimum propulsion torque. A pedal request module determines a pedal torque request based on an accelerator pedal position, a vehicle speed, and the zero pedal torque. A driver request module determines a driver axle torque request based on the pedal torque request. A shaping module selectively shapes the driver axle torque request into a shaped driver axle torque request. A conversion module converts the first minimum propulsion torque into a minimum axle torque. A final driver request module sets a final driver axle torque request equal to a greater of the shaped driver axle torque request and the minimum axle torque.
    Type: Application
    Filed: April 20, 2010
    Publication date: October 20, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Christopher E. Whitney, Robert C. Simon, JR., William L. Aldrich, III, Jun Lu, Birendra P. Bhattarai, Adam J. Heisel, Ning Jin
  • Publication number: 20110088658
    Abstract: A method for optimizing an engine idle speed in a vehicle having an engine, a motor generator unit (MGU), and an energy storage system (ESS) includes determining vehicle operating values, including at least one of: an electrical load of an accessory, a torque capacity of the MGU, a temperature of the MGU, an efficiency of the MGU, and a state of charge (SOC) of the ESS. The method also includes calculating a set of engine speed values using the set of vehicle operating values, and using a controller to command the engine idle speed as a function of the set of engine speed values. A vehicle includes an engine, an ESS, an MGU, and a controller having an algorithm adapted for optimizing an idle speed of the engine as set forth above.
    Type: Application
    Filed: October 15, 2009
    Publication date: April 21, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Donald Chan, William L. Aldrich, III, John L. Lahti, Birendra P. Bhattarai, Krunal P. Patel, Ning Jin
  • Patent number: 7823471
    Abstract: The method of the present invention provides a variety of vehicle performance characteristics depending on the mode of operation. A first routine is initiated to provide an optimal balance of powertrain responsiveness and fuel economy for any given combination of vehicle speed and deceleration rate. The first routine may, according to a preferred embodiment, include a plurality of routines that are each configured to provide an optimal balance of powertrain responsiveness and fuel economy within a predefined range of vehicle speeds and deceleration rates. A second routine is initiated if said deceleration rate is within a predefined range. The second routine includes running the electric motor/generator while the hybrid vehicle is being stopped in order to control the driveline lash and thereby minimize disturbances during a subsequent engine re-start.
    Type: Grant
    Filed: May 8, 2006
    Date of Patent: November 2, 2010
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Goro Tamai, William L. Aldrich, III, Birendra P. Bhattarai, Donald D. Crites, Tony T. Hoang
  • Publication number: 20100038158
    Abstract: A control system for an engine includes an engine control module (ECM) that operates in a first mode and a second mode. The ECM generates an idle speed signal and a transmission load signal that is based on an idle speed of the engine. The hybrid control module (HCM) increases electric motor torque to increase a current speed of the engine based on the idle speed signal and the transmission load signal. The HCM controls the current speed when in the first mode. The ECM controls the current speed when in the second mode. The HCM transfers control of the current speed to the ECM when at least one of the current speed matches the idle speed and a combustion torque output of the engine is equal to a requested crankshaft output torque.
    Type: Application
    Filed: January 13, 2009
    Publication date: February 18, 2010
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Christopher E. Whitney, Steven G. Bryde, R. Travis Schwenke, John L. Lahti, Ning Jin, Birendra P. Bhattarai, Cheryl A. Williams, James B Nicholson
  • Patent number: 7637842
    Abstract: A method and system to capture energy during regenerative braking while managing driveline disturbances by controlling locking and unlocking of a torque-converter clutch based upon operator input, typically throttle position or accelerator pedal position, vehicle speed, and engine load is offered. The exemplary vehicle has an engine, a torque converter with a clutch, and a transmission device. Vehicle kinetic energy is transmittable to an electrical machine using the transmission device and the torque converter. It includes monitoring an operator demand for power, engine operating speed, and, engine load; and, actuating the locking clutch for the torque converter based upon the operator demand for power, the engine operating speed, and, the engine load.
    Type: Grant
    Filed: January 23, 2007
    Date of Patent: December 29, 2009
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Goro Tamai, Daniel P. Laurent, Birendra P. Bhattarai, James L. Worthing
  • Patent number: 7637846
    Abstract: A method and system to control transmission shifting in a motor vehicle having an automatic transmission is provided, wherein a command for a transmission up-shift is detected, and, inhibited, based upon operator input, engine speed, and vehicle operating conditions. A fuel cutoff event is immediately implemented, along with electrical energy regeneration using vehicle kinetic energy. Operator input includes monitoring accelerator pedal input, and inhibiting the command for the transmission up-shift when a tip-out event occurs. The command for inhibiting the transmission up-shift is discontinued when an accelerator pedal tip-in is detected, or accelerator pedal position is greater than a calibrated value, or when engine output torque exceeds a torque threshold, or when engine speed exceeds a speed threshold.
    Type: Grant
    Filed: January 23, 2007
    Date of Patent: December 29, 2009
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Goro Tamai, Birendra P. Bhattarai, William L. Aldrich, III
  • Publication number: 20090308674
    Abstract: A control system for a hybrid powertrain includes an engine start detector that detects when an engine of the hybrid powertrain is activated via an electric motor during an auto start. An electric motor speed monitor determines a first speed of the electric motor for a first time and a second speed of the electric motor for a second time after detection of the engine in an active state. A control module determines a rate of change in speed of the electric motor based on the first speed and the second speed. The control module adjusts torque output of the electric motor during startup of the engine and based on the rate of change in speed.
    Type: Application
    Filed: May 15, 2009
    Publication date: December 17, 2009
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Birendra P. Bhattarai, Bon Ho Bae, Leah Dunbar
  • Patent number: 7600827
    Abstract: An anti-rollback control system for a vehicle having a brake system includes a brake pedal that is operable to induce a brake pressure in the brake system and a control module that holds the brake pressure equal to a hold pressure that is based on an incline angle to inhibit rollback of the vehicle when pressure is relieved from the brake pedal. The control module initiates forward propulsion of the vehicle based on a driver input and reduces the brake pressure from the hold pressure concurrent to initiating the forward propulsion.
    Type: Grant
    Filed: September 23, 2005
    Date of Patent: October 13, 2009
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Goro Tamai, Jeff A. Simpson, William L. Aldrich, III, Birendra P. Bhattarai