Patents by Inventor Birgit Enkisch

Birgit Enkisch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7672044
    Abstract: As a preliminary stage in manufacturing a lens or lens part for an objective, in particular a projection objective for a microlithography projection system, an optical blank is made from a crystal material. As a first step in manufacturing the optical blank, one determines the orientation of a first crystallographic direction that is defined in the crystallographic structure of the material. The material is then machined into an optical blank so that the first crystallographic direction is substantially perpendicular to an optical blank surface of the optical blank. Subsequently, a marking is applied to the optical blank or to a mounting element of the optical blank. The marking has a defined relationship to a second crystallographic direction which is oriented at a non-zero angle relative to the first crystallographic direction.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: March 2, 2010
    Assignee: Carl Zeiss SMT AG
    Inventors: Birgit Enkisch, Hartmut Enkisch, Toralf Gruner
  • Patent number: 7411656
    Abstract: A retardation arrangement for converting an input radiation beam, incident from an input side of the retardation arrangement, into an output radiation beam which has over its cross section a spatial distribution of polarization states which can be influenced by the retardation arrangement and differs from the spatial distribution of polarization states of the input radiation, is designed as a reflective retardation arrangement. A useful cross section of the retardation arrangement has a multiplicity of retardation zones of different retardation effect. Such a mirror arrangement having a retardation effect varying as a function of location can be used to compensate undesired fluctuations in the polarization state over the cross section of an input radiation beam and/or to set specific output polarization states, for example in order to set radial or tangential polarization.
    Type: Grant
    Filed: January 24, 2006
    Date of Patent: August 12, 2008
    Assignee: Carl Zeiss SMT AG
    Inventors: Michael Totzeck, Birgit Enkisch, Karl-Heinz Schuster
  • Patent number: 7382536
    Abstract: An objective for a microlithography projection system has at least one fluoride crystal lens. The effects of birefringence, which are detrimental to the image quality, are reduced if the lens axis of the crystal lens is oriented substantially perpendicular to the {100}-planes or {100}-equivalent crystallographic planes of the fluoride crystal. If two or more fluoride crystal lenses are used, they should have lens axes oriented in the (100)-, (111)-, or (110)-direction of the crystallographic structure, and they should be oriented at rotated positions relative to each other. The birefringence-related effects are further reduced by using groups of mutually rotated (100)-lenses in combination with groups of mutually rotated (111)- or (110)-lenses. A further improvement is also achieved by applying a compensation coating to at least one optical element of the objective.
    Type: Grant
    Filed: March 29, 2006
    Date of Patent: June 3, 2008
    Assignee: Carl Zeiss SMT AG
    Inventors: Daniel Krähmer, Toralf Gruner, Wilhelm Ulrich, Birgit Enkisch, Michael Gerhard, Martin Brunotte, Christian Wagner, Winfried Kaiser, Manfred Maul, Christof Zaczek
  • Publication number: 20080019013
    Abstract: As a preliminary stage in manufacturing a lens or lens part for an objective, in particular a projection objective for a microlithography projection system, an optical blank is made from a crystal material. As a first step in manufacturing the optical blank, one determines the orientation of a first crystallographic direction that is defined in the crystallographic structure of the material. The material is then machined into an optical blank so that the first crystallographic direction is substantially perpendicular to an optical blank surface of the optical blank. Subsequently, a marking is applied to the optical blank or to a mounting element of the optical blank. The marking has a defined relationship to a second crystallographic direction which is oriented at a non-zero angle relative to the first crystallographic direction.
    Type: Application
    Filed: September 28, 2007
    Publication date: January 24, 2008
    Applicant: CARL ZEISS SMT AG
    Inventors: Birgit Enkisch, Hartmut Enkisch, Toralf Gruner
  • Patent number: 7292388
    Abstract: As a preliminary stage in manufacturing a lens or lens part for an objective, in particular a projection objective for a microlithography projection system, an optical blank is made from a crystal material. As a first step in manufacturing the optical blank, one determines the orientation of a first crystallographic direction that is defined in the crystallographic structure of the material. The material is then machined into an optical blank so that the first crystallographic direction is substantially perpendicular to an optical blank surface of the optical blank. Subsequently, a marking is applied to the optical blank or to a mounting element of the optical blank. The marking has a defined relationship to a second crystallographic direction which is oriented at a non-zero angle relative to the first crystallographic direction.
    Type: Grant
    Filed: November 8, 2004
    Date of Patent: November 6, 2007
    Assignee: Carl Zeiss SMT AG
    Inventors: Birgit Enkisch, Hartmut Enkisch, Toralf Gruner
  • Patent number: 7180667
    Abstract: An objective for a microlithography projection system has at least one fluoride crystal lens. The effects of birefringence, which are detrimental to the image quality, are reduced if the lens axis of the crystal lens is oriented substantially perpendicular to the {100}-planes or {100}-equivalent crystallographic planes of the fluoride crystal. If two or more fluoride crystal lenses are used, they should have lens axes oriented in the (100)-, (111)-, or (110)-direction of the crystallographic structure, and they should be oriented at rotated positions relative to each other. The birefringence-related effects are further reduced by using groups of mutually rotated (100)-lenses in combination with groups of mutually rotated (111)- or (110)-lenses. A further improvement is also achieved by applying a compensation coating to at least one optical element of the objective.
    Type: Grant
    Filed: April 1, 2004
    Date of Patent: February 20, 2007
    Assignee: Carl Zeiss SMT AG
    Inventors: Daniel Krähmer, Toralf Gruner, Wilhelm Ulrich, Birgit Enkisch, Michael Gerhard, Martin Brunotte, Christian Wagner, Winfried Kaiser, Manfred Maul, Christof Zaczek
  • Patent number: 7145720
    Abstract: An objective for a microlithography projection system has at least one fluoride crystal lens. The effects of birefringence, which are detrimental to the image quality, are reduced if the lens axis of the crystal lens is oriented substantially perpendicular to the {100}-planes or {100}-equivalent crystallographic planes of the fluoride crystal. If two or more fluoride crystal lenses are used, they should have lens axes oriented in the (100)-, (111)-, or (110)-direction of the crystallographic structure, and they should be oriented at rotated positions relative to each other. The birefringence-related effects are further reduced by using groups of mutually rotated (100)-lenses in combination with groups of mutually rotated (111)- or (110)-lenses. A further improvement is also achieved by applying a compensation coating to at least one optical element of the objective.
    Type: Grant
    Filed: February 12, 2003
    Date of Patent: December 5, 2006
    Assignee: Carl Zeiss SMT AG
    Inventors: Daniel Krähmer, Toralf Gruner, Wilhelm Ulrich, Birgit Enkisch, Michael Gerhard, Martin Brunotte, Christian Wagner, Winfried Kaiser, Manfred Maul, Christof Zaczek
  • Patent number: 7126765
    Abstract: An objective for a microlithography projection system has at least one fluoride crystal lens. The effects of birefringence, which are detrimental to the image quality, are reduced if the lens axis of the crystal lens is oriented substantially perpendicular to the {100}-planes or {100}-equivalent crystallographic planes of the fluoride crystal. If two or more fluoride crystal lenses are used, they should have lens axes oriented in the (100)-, (111)-, or (110)-direction of the crystallographic structure, and they should be oriented at rotated positions relative to each other. The birefringence-related effects are further reduced by using groups of mutually rotated (100)-lenses in combination with groups of mutually rotated (111)- or (110)-lenses. A further improvement is also achieved by applying a compensation coating to at least one optical element of the objective.
    Type: Grant
    Filed: January 5, 2005
    Date of Patent: October 24, 2006
    Assignee: Carl Zeiss SMT AG
    Inventors: Daniel Krähmer, Toralf Gruner, Wilhelm Ulrich, Birgit Enkisch, Michael Gerhard, Martin Brunotte, Christian Wagner, Winfried Kaiser, Manfred Maul, Christof Zaczek
  • Publication number: 20060171020
    Abstract: An objective for a microlithography projection system has at least one fluoride crystal lens. The effects of birefringence, which are detrimental to the image quality, are reduced if the lens axis of the crystal lens is oriented substantially perpendicular to the {100}-planes or {100}-equivalent crystallographic planes of the fluoride crystal. If two or more fluoride crystal lenses are used, they should have lens axes oriented in the (100)-, (111)-, or (110)-direction of the crystallographic structure, and they should be oriented at rotated positions relative to each other. The birefringence-related effects are further reduced by using groups of mutually rotated (100)-lenses in combination with groups of mutually rotated (111)- or (110)-lenses. A further improvement is also achieved by applying a compensation coating to at least one optical element of the objective.
    Type: Application
    Filed: March 29, 2006
    Publication date: August 3, 2006
    Applicant: Carl Zeiss SMT AG
    Inventors: Daniel Krahmer, Toralf Gruner, Wilhelm Ulrich, Birgit Enkisch, Michael Gerhard, Martin Brunotte, Christian Wagner, Winfried Kaiser, Manfred Maul, Christoph Zaczek
  • Publication number: 20060152701
    Abstract: A retardation arrangement for converting an input radiation beam, incident from an input side of the retardation arrangement, into an output radiation beam which has over its cross section a spatial distribution of polarization states which can be influenced by the retardation arrangement and differs from the spatial distribution of polarization states of the input radiation, is designed as a reflective retardation arrangement. A useful cross section of the retardation arrangement has a multiplicity of retardation zones of different retardation effect. Such a mirror arrangement having a retardation effect varying as a function of location can be used to compensate undesired fluctuations in the polarization state over the cross section of an input radiation beam and/or to set specific output polarization states, for example in order to set radial or tangential polarization.
    Type: Application
    Filed: January 24, 2006
    Publication date: July 13, 2006
    Inventors: Michael Totzeck, Birgit Enkisch, Karl-Heinz Schuster
  • Patent number: 7053988
    Abstract: A retardation arrangement for converting an input radiation beam, incident from an input side of the retardation arrangement, into an output radiation beam which has over its cross section a spatial distribution of polarization states which can be influenced by the retardation arrangement and differs from the spatial distribution of polarization states of the input radiation, is designed as a reflective retardation arrangement. A useful cross section of the retardation arrangement has a multiplicity of retardation zones of different retardation effect. Such a mirror arrangement having a retardation effect varying as a function of location can be used to compensate undesired fluctuations in the polarization state over the cross section of an input radiation beam and/or to set specific output polarization states, for example in order to set radial or tangential polarization.
    Type: Grant
    Filed: November 26, 2003
    Date of Patent: May 30, 2006
    Assignee: Carl Zeiss SMT AG.
    Inventors: Michael Totzeck, Birgit Enkisch, Karl-Heinz Schuster
  • Publication number: 20050170748
    Abstract: As a preliminary stage in manufacturing a lens or lens part for an objective, in particular a projection objective for a microlithography projection system, an optical blank is made from a crystal material. As a first step in manufacturing the optical blank, one determines the orientation of a first crystallographic direction that is defined in the crystallographic structure of the material. The material is then machined into an optical blank so that the first crystallographic direction is substantially perpendicular to an optical blank surface of the optical blank. Subsequently, a marking is applied to the optical blank or to a mounting element of the optical blank. The marking has a defined relationship to a second crystallographic direction which is oriented at a non-zero angle relative to the first crystallographic direction.
    Type: Application
    Filed: November 8, 2004
    Publication date: August 4, 2005
    Inventors: Birgit Enkisch, Hartmut Enkisch, Toralf Gruner
  • Publication number: 20050122594
    Abstract: An objective for a microlithography projection system has at least one fluoride crystal lens. The effects of birefringence, which are detrimental to the image quality, are reduced if the lens axis of the crystal lens is oriented substantially perpendicular to the {100}-planes or {100}-equivalent crystallographic planes of the fluoride crystal. If two or more fluoride crystal lenses are used, they should have lens axes oriented in the (100)-, (111)-, or (110)-direction of the crystallographic structure, and they should be oriented at rotated positions relative to each other. The birefringence-related effects are further reduced by using groups of mutually rotated (100)-lenses in combination with groups of mutually rotated (111)- or (110)-lenses. A further improvement is also achieved by applying a compensation coating to at least one optical element of the objective.
    Type: Application
    Filed: January 5, 2005
    Publication date: June 9, 2005
    Inventors: Daniel Krahmer, Toralf Gruner, Wilhelm Ulrich, Birgit Enkisch, Michael Gerhard, Martin Brunotte, Christian Wagner, Winfried Kaiser, Manfred Maul, Christoph Zaczek
  • Publication number: 20040190151
    Abstract: An objective for a microlithography projection system has at least one fluoride crystal lens. The effects of birefringence, which are detrimental to the image quality, are reduced if the lens axis of the crystal lens is oriented substantially perpendicular to the {100}-planes or {100}-equivalent crystallographic planes of the fluoride crystal. If two or more fluoride crystal lenses are used, they should have lens axes oriented in the (100)-, (111)-, or (110)-direction of the crystallographic structure, and they should be oriented at rotated positions relative to each other. The birefringence-related effects are further reduced by using groups of mutually rotated (100)-lenses in combination with groups of mutually rotated (111)- or (110)-lenses. A further improvement is also achieved by applying a compensation coating to at least one optical element of the objective.
    Type: Application
    Filed: April 1, 2004
    Publication date: September 30, 2004
    Inventors: Daniel Krahmer, Toralf Gruner, Wilheim Ulrich, Birgit Enkisch, Michael Gerhard, Martin Brunotte, Christian Wagner, Winfried Kaiser, Manfred Maul, Christoph Zaczek
  • Publication number: 20040184019
    Abstract: A retardation arrangement for converting an input radiation beam, incident from an input side of the retardation arrangement, into an output radiation beam which has over its cross section a spatial distribution of polarization states which can be influenced by the retardation arrangement and differs from the spatial distribution of polarization states of the input radiation, is designed as a reflective retardation arrangement. A useful cross section of the retardation arrangement has a multiplicity of retardation zones of different retardation effect. Such a mirror arrangement having a retardation effect varying as a function of location can be used to compensate undesired fluctuations in the polarization state over the cross section of an input radiation beam and/or to set specific output polarization states, for example in order to set radial or tangential polarization.
    Type: Application
    Filed: November 26, 2003
    Publication date: September 23, 2004
    Applicant: CARL ZEISS SMT AG
    Inventors: Michael Totzeck, Birgit Enkisch, Karl-Heinz Schuster
  • Publication number: 20040105170
    Abstract: An objective for a microlithography projection system has at least one fluoride crystal lens. The effects of birefringence, which are detrimental to the image quality, are reduced if the lens axis of the crystal lens is oriented substantially perpendicular to the {100}-planes or {100}-equivalent crystallographic planes of the fluoride crystal. If two or more fluoride crystal lenses are used, they should have lens axes oriented in the (100)-, (111)-, or (110)-direction of the crystallographic structure, and they should be oriented at rotated positions relative to each other. The birefringence-related effects are further reduced by using groups of mutually rotated (100)-lenses in combination with groups of mutually rotated (111)- or (110)-lenses. A further improvement is also achieved by applying a compensation coating to at least one optical element of the objective.
    Type: Application
    Filed: February 12, 2003
    Publication date: June 3, 2004
    Applicant: Carl Zeiss SMT AG
    Inventors: Daniel Krahmer, Toralf Gruner, Wilhelm Ulrich, Birgit Enkisch, Michael Gerhard, Martin Brunotte, Christian Wagner, Winfried Kaiser, Manfred Maul, Christoph Zaczek