Patents by Inventor Birte DOMNIK
Birte DOMNIK has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12118648Abstract: A computer implemented method for determining a two dimensional DRR referred to as dynamic DRR based on a 4D-CT, the 4D-CT describing a sequence of three dimensional medical computer tomographic images of an anatomical body part of a patient, the images being referred to as sequence CTs, the 4D-CT representing the anatomical body part at different points in time, the anatomical body part comprising at least one primary anatomical element and secondary anatomical elements, the computer implemented method comprising the following steps: acquiring the 4D-CT; acquiring a planning CT, the planning CT being a three dimensional image used for planning of a treatment of the patient, the planning CT being acquired based on at least one of the sequence CTs or independently from the 4D-CT, acquiring a three dimensional image, referred to as undynamic CT, from the 4D-CT, the undynamic CT comprising at least one first image element representing the at least one primary anatomical element and second image elements represenType: GrantFiled: May 1, 2023Date of Patent: October 15, 2024Assignee: Brainlab AGInventors: Kajetan Berlinger, Birte Domnik, Elisa Garcia Corisco, Pascal Bertram
-
Publication number: 20230342992Abstract: A computer implemented method for determining a two dimensional DRR referred to as dynamic DRR based on a 4D-CT, the 4D-CT describing a sequence of three dimensional medical computer tomographic images of an anatomical body part of a patient, the images being referred to as sequence CTs, the 4D-CT representing the anatomical body part at different points in time, the anatomical body part comprising at least one primary anatomical element and secondary anatomical elements, the computer implemented method comprising the following steps: acquiring the 4D-CT; acquiring a planning CT, the planning CT being a three dimensional image used for planning of a treatment of the patient, the planning CT being acquired based on at least one of the sequence CTs or independently from the 4D-CT, acquiring a three dimensional image, referred to as undynamic CT, from the 4D-CT, the undynamic CT comprising at least one first image element representing the at least one primary anatomical element and second image elements represenType: ApplicationFiled: May 1, 2023Publication date: October 26, 2023Inventors: Kajetan BERLINGER, Birte DOMNIK, Elisa Garcia Corisco, Pascal BERTRAM
-
Patent number: 11751947Abstract: The present invention relates to a computer-implemented medical method for improving the suitability of a tracking structure for tracking by tessellating the tracking structure into a plurality of sub-tracking structures. The invention also relates to a computer configured to execute a program corresponding to the method and a medical system for improving the suitability of a tracking structure for tracking, the system including the aforementioned computer.Type: GrantFiled: May 9, 2018Date of Patent: September 12, 2023Assignee: BRAINLAB AGInventors: Kajetan Berlinger, Birte Domnik
-
Patent number: 11669982Abstract: The disclosed method encompasses reconstruction of a three-dimensional position of a tracking structure (which may comprise a target of radiation treatment) as reconstructed tracking structure data from pairs of two-dimensional tracking images which are input as tracking image data. Each tracking image contained in a pair of tracking images is compared to a tracking representation of the tracking structure contained in a search template image generated from the same perspective onto the tracking structure as the associated tracking image and input as search template data. The tracking image having the highest at local degree of similarity to its associated search template image is selected as a starting point (the first tracking image) for computing a corresponding image position (a complement point) in the other tracking image (the second tracking image) on the basis of applying epipolar geometry outgoing from the position in the first tracking image associated with the highest local degree of similarity.Type: GrantFiled: June 21, 2021Date of Patent: June 6, 2023Assignee: BRAINLAB AGInventors: Kajetan Berlinger, Birte Domnik
-
Patent number: 11663755Abstract: A computer implemented method for determining a two dimensional DRR referred to as dynamic DRR based on a 4D-CT, the 4D-CT describing a sequence of three dimensional medical computer tomographic images of an anatomical body part of a patient, the images being referred to as sequence CTs, the 4D-CT representing the anatomical body part at different points in time, the anatomical body part comprising at least one primary anatomical element and secondary anatomical elements, the computer implemented method comprising the following steps: acquiring the 4D-CT; acquiring a planning CT, the planning CT being a three dimensional image used for planning of a treatment of the patient, the planning CT being acquired based on at least one of the sequence CTs or independently from the 4D-CT, acquiring a three dimensional image, referred to as undynamic CT, from the 4D-CT, the undynamic CT comprising at least one first image element representing the at least one primary anatomical element and second image elements represenType: GrantFiled: January 11, 2022Date of Patent: May 30, 2023Assignee: BRAINLAB AGInventors: Kajetan Berlinger, Birte Domnik, Elisa Garcia Corisco, Pascal Bertram
-
Patent number: 11565129Abstract: Disclosed is a computer-implemented method for determining a position of an anatomical tracking structure in a tracking image usable for controlling a radiation treatment such as at least one of radiotherapy or radio surgery of a patient, a corresponding computer program, a non-transitory program storage medium storing such a program and a computer for executing the program, as well as a system for the position of an anatomical tracking structure in a tracking image usable for controlling a radiation treatment such as at least one of radiotherapy or radio surgery of a patient, a system comprising an electronic data storage device and the aforementioned computer.Type: GrantFiled: June 13, 2017Date of Patent: January 31, 2023Assignee: BRAINLAB AGInventors: Birte Domnik, Kajetan Berlinger
-
Publication number: 20220189080Abstract: A computer implemented method for determining a two dimensional DRR referred to as dynamic DRR based on a 4D-CT, the 4D-CT describing a sequence of three dimensional medical computer tomographic images of an anatomical body part of a patient, the images being referred to as sequence CTs, the 4D-CT representing the anatomical body part at different points in time, the anatomical body part comprising at least one primary anatomical element and secondary anatomical elements, the computer implemented method comprising the following steps: acquiring the 4D-CT; acquiring a planning CT, the planning CT being a three dimensional image used for planning of a treatment of the patient, the planning CT being acquired based on at least one of the sequence CTs or independently from the 4D-CT, acquiring a three dimensional image, referred to as undynamic CT, from the 4D-CT, the undynamic CT comprising at least one first image element representing the at least one primary anatomical element and second image elements represenType: ApplicationFiled: January 11, 2022Publication date: June 16, 2022Inventors: Kajetan BERLINGER, Birte DOMNIK, Elisa Garcia Corisco, Pascal BERTRAM
-
Patent number: 11295462Abstract: A medical data processing method, performed by a computer (2), for determining error analysis data describing the registration accuracy of a first elastic registration between first and second image data (A, B) describing images of an anatomical structure of a patient, comprising the steps of: —acquiring the first image data (A) describing a first image of the anatomical structure, —acquiring the second image data (B) describing a second image of the anatomical structure, —determining first registration data describing a first elastic registration of the first image data (A) to the second image data (B) by mapping the first image data (A) to the second image data (B) using a registration algorithm, —determining second registration data describing a second elastic registration of the second image data (B) to the first image data (A) by mapping the second image data (B) to the first image data (A) using the registration algorithm, —determining error analysis data describing the registration accuracy of the firsType: GrantFiled: December 16, 2015Date of Patent: April 5, 2022Assignee: BRAINLAB AGInventors: Pascal Bertram, Elisa Garcia Corsico, Ivana Ivanovska, Birte Domnik
-
Patent number: 11227417Abstract: A computer implemented method for determining a two dimensional DRR referred to as dynamic DRR based on a 4D-CT, the 4D-CT describing a sequence of three dimensional medical computer tomographic images of an anatomical body part of a patient, the images being referred to as sequence CTs, the 4D-CT representing the anatomical body part at different points in time, the anatomical body part comprising at least one primary anatomical element and secondary anatomical elements, the computer implemented method comprising the following steps: acquiring the 4D-CT; acquiring a planning CT, the planning CT being a three dimensional image used for planning of a treatment of the patient, the planning CT being acquired based on at least one of the sequence CTs or independently from the 4D-CT, acquiring a three dimensional image, referred to as undynamic CT, from the 4D-CT, the undynamic CT comprising at least one first image element representing the at least one primary anatomical element and second image elements represenType: GrantFiled: September 2, 2020Date of Patent: January 18, 2022Assignee: BRAINLAB AGInventors: Kajetan Berlinger, Birte Domnik, Elisa Garcia Corisco, Pascal Bertram
-
Publication number: 20210312644Abstract: The disclosed method encompasses reconstruction of a three-dimensional position of a tracking structure (which may comprise a target of radiation treatment) as reconstructed tracking structure data from pairs of two-dimensional tracking images which are input as tracking image data. Each tracking image contained in a pair of tracking images is compared to a tracking representation of the tracking structure contained in a search template image generated from the same perspective onto the tracking structure as the associated tracking image and input as search template data. The tracking image having the highest at local degree of similarity to its associated search template image is selected as a starting point (the first tracking image) for computing a corresponding image position (a complement point) in the other tracking image (the second tracking image) on the basis of applying epipolar geometry outgoing from the position in the first tracking image associated with the highest local degree of similarity.Type: ApplicationFiled: June 21, 2021Publication date: October 7, 2021Inventors: Kajetan Berlinger, Birte Domnik
-
Publication number: 20210213304Abstract: Disclosed is a computer-implemented method for determining the position of an anatomical tracking structure in a tracking image usable for controlling radiation treatment such as at least one of radiotherapy or radio surgery of a patient, a corresponding computer program, a non-transitory program storage medium storing such a program and a computer for executing the program, as well as a system for the position of an anatomical tracking structure in a tracking image usable for controlling radiation treatment such as at least one of radiotherapy or radio surgery of a patient, the system comprising an electronic data storage device and the aforementioned computer.Type: ApplicationFiled: June 13, 2017Publication date: July 15, 2021Inventors: Birte Domnik, Kajetan Berlinger
-
Patent number: 11042993Abstract: The disclosed method encompasses reconstruction of a three-dimensional position of a tracking structure (which may comprise a target of radiation treatment) as reconstructed tracking structure data from pairs of two-dimensional tracking images which are input as tracking image data. Each tracking image contained in a pair of tracking images is compared to a tracking representation of the tracking structure contained in a search template image generated from the same perspective onto the tracking structure as the associated tracking image and input as search template data. The tracking image having the highest at local degree of similarity to its associated search template image is selected as a starting point (the first tracking image) for computing a corresponding image position (a complement point) in the other tracking image (the second tracking image) on the basis of applying epipolar geometry outgoing from the position in the first tracking image associated with the highest local degree of similarity.Type: GrantFiled: October 9, 2017Date of Patent: June 22, 2021Assignee: BRAINLAB AGInventors: Kajetan Berlinger, Birte Domnik
-
Publication number: 20200402271Abstract: A computer implemented method for determining a two dimensional DRR referred to as dynamic DRR based on a 4D-CT, the 4D-CT describing a sequence of three dimensional medical computer tomographic images of an anatomical body part of a patient, the images being referred to as sequence CTs, the 4D-CT representing the anatomical body part at different points in time, the anatomical body part comprising at least one primary anatomical element and secondary anatomical elements, the computer implemented method comprising the following steps: acquiring the 4D-CT; acquiring a planning CT, the planning CT being a three dimensional image used for planning of a treatment of the patient, the planning CT being acquired based on at least one of the sequence CTs or independently from the 4D-CT, acquiring a three dimensional image, referred to as undynamic CT, from the 4D-CT, the undynamic CT comprising at least one first image element representing the at least one primary anatomical element and second image elements represenType: ApplicationFiled: September 2, 2020Publication date: December 24, 2020Inventors: Kajetan BERLINGER, Birte DOMNIK, Elisa Garcia CORSICO, Pascal BERTRAM
-
Publication number: 20200388041Abstract: The disclosed method encompasses reconstruction of a three-dimensional position of a tracking structure (which may comprise a target of radiation treatment) as reconstructed tracking structure data from pairs of two-dimensional tracking images which are input as tracking image data. Each tracking image contained in a pair of tracking images is compared to a tracking representation of the tracking structure contained in a search template image generated from the same perspective onto the tracking structure as the associated tracking image and input as search template data. The tracking image having the highest at local degree of similarity to its associated search template image is selected as a starting point (the first tracking image) for computing a corresponding image position (a complement point) in the other tracking image (the second tracking image) on the basis of applying epipolar geometry outgoing from the position in the first tracking image associated with the highest local degree of similarity.Type: ApplicationFiled: October 9, 2017Publication date: December 10, 2020Inventors: Kajetan Berlinger, Birte Domnik
-
Patent number: 10776959Abstract: A computer implemented method for determining a two dimensional DRR referred to as dynamic DRR based on a 4D-CT, the 4D-CT describing a sequence of three dimensional medical computer tomographic images of an anatomical body part of a patient, the images being referred to as sequence CTs, the 4D-CT representing the anatomical body part at different points in time, the anatomical body part comprising at least one primary anatomical element and secondary anatomical elements, the computer implemented method comprising the following steps: acquiring the 4D-CT; acquiring a planning CT, the planning CT being a three dimensional image used for planning of a treatment of the patient, the planning CT being acquired based on at least one of the sequence CTs or independently from the 4D-CT, acquiring a three dimensional image, referred to as undynamic CT, from the 4D-CT, the undynamic CT comprising at least one first image element representing the at least one primary anatomical element and second image elements represenType: GrantFiled: February 16, 2016Date of Patent: September 15, 2020Assignee: BRAINLAB AGInventors: Kajetan Berlinger, Birte Domnik, Elisa Garcia Corsico, Pascal Bertram
-
Patent number: 10628963Abstract: A medical data processing method and system determines the position of an artifact in patient image data describing a set of tomographic slice images of an anatomical structure of a patient. The images are described by color Values. Color value difference data describing differences in color values for image elements in adjacent slice images is determined. At least one of positive or negative difference data, describing a subset of the differences and consisting of differences having a positive or negative value are determined. Smoothed difference data describing a smoothing of the differences contained in the positive or negative difference data are determined and, based on the positive or negative difference data and the smoothed difference data, artifact position data is determined describing the position of an artifact in the patient image data.Type: GrantFiled: February 29, 2016Date of Patent: April 21, 2020Assignee: Brainlab AGInventors: Pascal Bertram, Birte Domnik, Elisa Garcia Corisco
-
Publication number: 20190201109Abstract: The present invention relates to a computer-implemented medical method for improving the suitability of a tracking structure for tracking by tessellating the tracking structure into a plurality of sub-tracking structures. The invention also relates to a computer configured to execute a program corresponding to the method and a medical system for improving the suitability of a tracking structure for tracking, the system including the aforementioned computer.Type: ApplicationFiled: May 9, 2018Publication date: July 4, 2019Applicant: Brainlab AGInventors: Kajetan Berlinger, Birte Domnik
-
Publication number: 20190043224Abstract: A computer implemented method for determining a two dimensional DRR referred to as dynamic DRR based on a 4D-CT, the 4D-CT describing a sequence of three dimensional medical computer tomographic images of an anatomical body part of a patient, the images being referred to as sequence CTs, the 4D-CT representing the anatomical body part at different points in time, the anatomical body part comprising at least one primary anatomical element and secondary anatomical elements, the computer implemented method comprising the following steps: acquiring the 4D-CT; acquiring a planning CT, the planning CT being a three dimensional image used for planning of a treatment of the patient, the planning CT being acquired based on at least one of the sequence CTs or independently from the 4D-CT, acquiring a three dimensional image, referred to as undynamic CT, from the 4D-CT, the undynamic CT comprising at least one first image element representing the at least one primary anatomical element and second image elements represenType: ApplicationFiled: February 16, 2016Publication date: February 7, 2019Inventors: Kajetan BERLINGER, Birte DOMNIK, Elisa Garcia CORSICO, Pascal BERTRAM
-
Publication number: 20190012805Abstract: A medical data processing method and system determines the position of an artifact in patient image data describing a set of tomographic slice images of an anatomical structure of a patient. The images are described by color Values. Color value difference data describing differences in color values for image elements in adjacent slice images is determined. At least one of positive or negative difference data, describing a subset of the differences and consisting of differences having a positive or negative value are determined. Smoothed difference data describing a smoothing of the differences contained in the positive or negative difference data are determined and, based on the positive or negative difference data and the smoothed difference data, artifact position data is determined describing the position of an artifact in the patient image data.Type: ApplicationFiled: February 29, 2016Publication date: January 10, 2019Inventors: Pascal BERTRAM, Birte DOMNIK, Elisa Garcia CORISCO
-
Publication number: 20180315204Abstract: A medical data processing method, performed by a computer (2), for determining error analysis data describing the registration accuracy of a first elastic registration between first and second image data (A, B) describing images of an anatomical structure of a patient, comprising the steps of: —acquiring the first image data (A) describing a first image of the anatomical structure, —acquiring the second image data (B) describing a second image of the anatomical structure, —determining first registration data describing a first elastic registration of the first image data (A) to the second image data (B) by mapping the first image data (A) to the second image data (B) using a registration algorithm, —determining second registration data describing a second elastic registration of the second image data (B) to the first image data (A) by mapping the second image data (B) to the first image data (A) using the registration algorithm, —determining error analysis data describing the registration accuracy of the firsType: ApplicationFiled: December 16, 2015Publication date: November 1, 2018Inventors: Pascal BERTRAM, Elisa Garcia CORSICO, Ivana IVANOVSKA, Birte DOMNIK