Patents by Inventor Björn Zörner

Björn Zörner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9911994
    Abstract: A fuel supply system for a fuel cell is described. One embodiment of the fuel supply system includes a fuel supply vessel; a fuel spending line in fluid communication with the fuel supply vessel and the fuel cell; a piezoelectric injector in fluid communication with the fuel spending line; and a pressure sensor connected to the fuel spending line and positioned between the fuel supply vessel and the fuel cell. A method for controlling the pressure to a fuel cell is also described.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: March 6, 2018
    Assignee: GM Global Technology Operations LLC
    Inventors: Ralph Hobmeyr, Björn Zörner, Marcus Jung
  • Patent number: 9163616
    Abstract: High pressure gas vessels can have a sensitivity to temperature of the compressed gas. Over-temperature conditions in particular may cause decreased durability and/or vessel damage, including gas leakage to the environment. Articles of manufacture, methods, and systems are provided for over-temperature protection using a passive device. The passive closing device does not require electrical power and no controller, sensors, or wiring is needed. This affords cost savings in comparison to other systems. Pressure vessels using the passive closing device can protect themselves, independent of the compressed gas fueling station configuration.
    Type: Grant
    Filed: April 17, 2014
    Date of Patent: October 20, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Oliver Maier, Jurgen Thyroff, Bjoern Zoerner, Ralph Hobmeyr
  • Patent number: 8927171
    Abstract: A method and system for preventing gas pressure in a pressure vessel from dropping below a minimum allowable pressure. Pressure readings from a pressure sensor downstream of a pressure regulator are monitored by a processor as they vary within a steady fluctuation band under normal regulated pressure conditions. When the pressure regulator reaches a fully open position in low vessel pressure conditions, the processor detects a drop in the pressure reading to a value below the recent fluctuation band, and recognizes that the pressure is dropping below the regulation pressure value. The processor can use this information to shut off flow of gas from the vessel, thus preventing the vessel from dropping below its minimum allowable pressure, regardless of the actual magnitude of the pressure reading from the sensor—which can vary through a wide range due to tolerances.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: January 6, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Ralph Hobmeyr, Heiko Hrobarsch, Björn Zörner
  • Publication number: 20140223899
    Abstract: High pressure gas vessels can have a sensitivity to temperature of the compressed gas. Over-temperature conditions in particular may cause decreased durability and/or vessel damage, including gas leakage to the environment. Articles of manufacture, methods, and systems are provided for over-temperature protection using a passive device. The passive closing device does not require electrical power and no controller, sensors, or wiring is needed. This affords cost savings in comparison to other systems. Pressure vessels using the passive closing device can protect themselves, independent of the compressed gas fueling station configuration.
    Type: Application
    Filed: April 17, 2014
    Publication date: August 14, 2014
    Applicant: GM Global Technology Operations LLC
    Inventors: Oliver Maier, Jurgen Thyroff, Bjoern Zoerner, Ralph Hobmeyr
  • Patent number: 8561453
    Abstract: A method and system for automatically calibrating all pressure sensors in a hydrogen storage system for a fuel cell vehicle. A pressure regulator in the hydrogen storage system, which has much greater accuracy at low pressures, is used to calibrate the high-range pressure sensors used in the hydrogen storage system. This calibration can only be done when the pressure regulator is in a fully open position. In such a condition, the pressure sensors can be calibrated to the regulation pressure value of the regulator, thus greatly improving the accuracy of the readings of the high-range sensors at the low end of their range. The calibration can be performed during fuel cell operation under certain circumstances, performed during a programmed shutdown sequence, or performed in a service procedure.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: October 22, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Ralph Hobmeyr, Björn Zörner, Heiko Hrobarsch
  • Publication number: 20120301807
    Abstract: A fuel supply system for a fuel cell is described. One embodiment of the fuel supply system includes a fuel supply vessel; a fuel spending line in fluid communication with the fuel supply vessel and the fuel cell; a piezoelectric injector in fluid communication with the fuel spending line; and a pressure sensor connected to the fuel spending line and positioned between the fuel supply vessel and the fuel cell. A method for controlling the pressure to a fuel cell is also described.
    Type: Application
    Filed: May 26, 2011
    Publication date: November 29, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Ralph Hobmeyr, Björn Zörner, Marcus Jung
  • Publication number: 20120060584
    Abstract: A method and system for automatically calibrating all pressure sensors in a hydrogen storage system for a fuel cell vehicle. A pressure regulator in the hydrogen storage system, which has much greater accuracy at low pressures, is used to calibrate the high-range pressure sensors used in the hydrogen storage system. This calibration can only be done when the pressure regulator is in a fully open position. In such a condition, the pressure sensors can be calibrated to the regulation pressure value of the regulator, thus greatly improving the accuracy of the readings of the high-range sensors at the low end of their range. The calibration can be performed during fuel cell operation under certain circumstances, performed during a programmed shutdown sequence, or performed in a service procedure.
    Type: Application
    Filed: September 14, 2010
    Publication date: March 15, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Ralph Hobmeyr, Björn Zörner, Heiko Hrobarsch
  • Publication number: 20120060936
    Abstract: A method and system for preventing gas pressure in a pressure vessel from dropping below a minimum allowable pressure. Pressure readings from a pressure sensor downstream of a pressure regulator are monitored by a processor as they vary within a steady fluctuation band under normal regulated pressure conditions. When the pressure regulator reaches a fully open position in low vessel pressure conditions, the processor detects a drop in the pressure reading to a value below the recent fluctuation band, and recognizes that the pressure is dropping below the regulation pressure value. The processor can use this information to shut off flow of gas from the vessel, thus preventing the vessel from dropping below its minimum allowable pressure, regardless of the actual magnitude of the pressure reading from the sensor—which can vary through a wide range due to tolerances.
    Type: Application
    Filed: September 14, 2010
    Publication date: March 15, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Ralph Hobmeyr, Heiko Hrobarsch, Björn Zörner