Patents by Inventor Bjarne ISFELDT

Bjarne ISFELDT has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11059552
    Abstract: Apparatuses, systems, and methods for the deployment of a plurality of autonomous underwater seismic vehicles (AUVs) on or near the seabed based on acoustic communications with an underwater vehicle, such as a remotely operated vehicle. In an embodiment, the underwater vehicle is lowered from a surface vessel along with a subsea station with a plurality of AUVs. The AUVs are configured to acoustically communicate with the underwater vehicle or a second surface vessel for deployment and retrieval operations. The underwater vehicle and/or second surface vessel is configured to instruct the AUVs to leave the subsea station or underwater vehicle and to travel to their intended seabed destination. The underwater vehicle and/or second surface vessel is also configured to selectively instruct the AUVs to leave the seabed and return to a seabed location and/or a subsea station for retrieval.
    Type: Grant
    Filed: September 12, 2018
    Date of Patent: July 13, 2021
    Assignee: Seabed Geosolutions B.V.
    Inventors: Arne Henning Rokkan, Geir Valsvik, Bjarne Isfeldt, Jean-Baptiste Danre
  • Patent number: 10879722
    Abstract: Embodiments of systems and methods for inductively powering seismic sensor nodes are presented. An embodiment of an inductive battery includes a battery cell configured to store charge for use by an external device. The inductive battery may also include a first inductive element coupled to the battery cell, the first inductive element configured to receive current from the battery cell and emit a responsive magnetic field for powering an external device through inductance. In an embodiment the external device is a seismic sensor node.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: December 29, 2020
    Inventor: Bjarne Isfeldt
  • Publication number: 20190094402
    Abstract: Disclosed is a method for determining skew measurements for clock errors in an autonomous seismic node. A parabolic fit may be used to estimate the clock drift of an ocean bottom seismic node during node deployment. A temperature and/or frequency trend and a real-time temperature measurement may be used to compute a temperature corrected parabolic trend. The temperature and/or frequency trend may be measured in a laboratory on a node by node basis or it may be a single trend that is suitable for all nodes. The method may include measuring clock skew prior to node deployment and after node recovery, correcting the pre and post deployment skew measurements based on a temperature and/or frequency trend and/or to a constant reference temperature, and/or computing a parabolic trend of the skew measurements of the clock based on the temperature corrected pre and post deployment skew measurements.
    Type: Application
    Filed: September 25, 2018
    Publication date: March 28, 2019
    Applicant: Seabed Geosolutions B.V.
    Inventors: Timothy John Bunting, Bjarne Isfeldt
  • Publication number: 20190067980
    Abstract: Embodiments of systems and methods for inductively powering seismic sensor nodes are presented. An embodiment of an inductive battery includes a battery cell configured to store charge for use by an external device. The inductive battery may also include a first inductive element coupled to the battery cell, the first inductive element configured to receive current from the battery cell and emit a responsive magnetic field for powering an external device through inductance. In an embodiment the external device is a seismic sensor node.
    Type: Application
    Filed: October 30, 2018
    Publication date: February 28, 2019
    Applicant: Seabed Geosolutions B.V.
    Inventor: Bjarne Isfeldt
  • Publication number: 20190023367
    Abstract: Apparatuses, systems, and methods for the deployment of a plurality of autonomous underwater seismic vehicles (AUVs) on or near the seabed based on acoustic communications with an underwater vehicle, such as a remotely operated vehicle. In an embodiment, the underwater vehicle is lowered from a surface vessel along with a subsea station with a plurality of AUVs. The AUVs are configured to acoustically communicate with the underwater vehicle or a second surface vessel for deployment and retrieval operations. The underwater vehicle and/or second surface vessel is configured to instruct the AUVs to leave the subsea station or underwater vehicle and to travel to their intended seabed destination. The underwater vehicle and/or second surface vessel is also configured to selectively instruct the AUVs to leave the seabed and return to a seabed location and/or a subsea station for retrieval.
    Type: Application
    Filed: September 12, 2018
    Publication date: January 24, 2019
    Applicant: Seabed Geosolutions B.V.
    Inventors: Arne Henning Rokkan, Geir Valsvik, Bjarne Isfeldt, Jean-Baptiste Danre
  • Patent number: 10135290
    Abstract: Embodiments of systems and methods for inductively powering seismic sensor nodes are presented. An embodiment of an inductive battery includes a battery cell configured to store charge for use by an external device. The inductive battery may also include a first inductive element coupled to the battery cell, the first inductive element configured to receive current from the battery cell and emit a responsive magnetic field for powering an external device through inductance. In an embodiment the external device is a seismic sensor node.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: November 20, 2018
    Assignee: SEABED GEOSOLUTIONS B.V.
    Inventor: Bjarne Isfeldt
  • Patent number: 10099760
    Abstract: Apparatuses, systems, and methods for the deployment of a plurality of autonomous underwater seismic vehicles (AUVs) on or near the seabed based on acoustic communications with an underwater vehicle, such as a remotely operated vehicle. In an embodiment, the underwater vehicle is lowered from a surface vessel along with a subsea station with a plurality of AUVs. The AUVs are configured to acoustically communicate with the underwater vehicle or a second surface vessel for deployment and retrieval operations. The underwater vehicle and/or second surface vessel is configured to instruct the AUVs to leave the subsea station or underwater vehicle and to travel to their intended seabed destination. The underwater vehicle and/or second surface vessel is also configured to selectively instruct the AUVs to leave the seabed and return to a seabed location and/or a subsea station for retrieval.
    Type: Grant
    Filed: January 18, 2018
    Date of Patent: October 16, 2018
    Assignee: Seabed Geosolutions B.V.
    Inventors: Arne Henning Rokkan, Geir Valsvik, Bjarne Isfeldt, Jean-Baptiste Danre
  • Publication number: 20180141628
    Abstract: Apparatuses, systems, and methods for the deployment of a plurality of autonomous underwater seismic vehicles (AUVs) on or near the seabed based on acoustic communications with an underwater vehicle, such as a remotely operated vehicle. In an embodiment, the underwater vehicle is lowered from a surface vessel along with a subsea station with a plurality of AUVs. The AUVs are configured to acoustically communicate with the underwater vehicle or a second surface vessel for deployment and retrieval operations. The underwater vehicle and/or second surface vessel is configured to instruct the AUVs to leave the subsea station or underwater vehicle and to travel to their intended seabed destination. The underwater vehicle and/or second surface vessel is also configured to selectively instruct the AUVs to leave the seabed and return to a seabed location and/or a subsea station for retrieval.
    Type: Application
    Filed: January 18, 2018
    Publication date: May 24, 2018
    Applicant: Seabed Geosolutions B.V.
    Inventors: Arne Henning Rokkan, Geir Valsvik, Bjarne Isfeldt, Jean-Baptiste Danre
  • Patent number: 9891333
    Abstract: Apparatuses, systems, and methods for guiding and/or positioning a plurality of seismic nodes on or near the seabed by an autonomous underwater vehicle (AUV) or a remotely operated vehicle (ROV). In one embodiment, an underwater vehicle is configured to monitor the deployment of cable connected to a plurality of seismic nodes, including the touchdown monitoring, positioning, and guiding of deployed autonomous seismic nodes or ocean bottom cable. The underwater vehicle may comprise a propulsion system configured to steer and propel the vehicle in a body of water, a tracking system configured to automatically track the cable and/or attached seismic nodes, and a guidance system configured to communicate with a surface vessel node data in real time or near real time for active guidance and/or positioning of the deployment cable.
    Type: Grant
    Filed: October 28, 2015
    Date of Patent: February 13, 2018
    Assignee: SEABED GEOSOLUTIONS B.V.
    Inventors: Geir Valsvik, Arne Henning Rokkan, Jean-Baptiste Danre, Bjarne Isfeldt
  • Patent number: 9873496
    Abstract: Apparatuses, systems, and methods for the deployment of a plurality of autonomous underwater seismic vehicles (AUVs) on or near the seabed based on acoustic communications with an underwater vehicle, such as a remotely operated vehicle. In an embodiment, the underwater vehicle is lowered from a surface vessel along with a subsea station with a plurality of AUVs. The AUVs are configured to acoustically communicate with the underwater vehicle or a second surface vessel for deployment and retrieval operations. The underwater vehicle and/or second surface vessel is configured to instruct the AUVs to leave the subsea station or underwater vehicle and to travel to their intended seabed destination. The underwater vehicle and/or second surface vessel is also configured to selectively instruct the AUVs to leave the seabed and return to a seabed location and/or a subsea station for retrieval.
    Type: Grant
    Filed: October 27, 2015
    Date of Patent: January 23, 2018
    Assignee: SEABED GEOSOLUTIONS B.V.
    Inventors: Arne Henning Rokkan, Geir Valsvik, Bjarne Isfeldt, Jean-Baptiste Danre
  • Patent number: 9823265
    Abstract: A method and geophysical acceleration sensor (100) for measuring seismic data and also for protecting the sensor from shock. The sensor includes a housing (102); a flexible beam (104) having a first end fixedly attached to the housing; a piezoelectric layer (108) attached to the flexible beam; a seismic mass (112) attached to the flexible beam; and a first movement limiter (130) connected to the housing and configured to limit a movement of the flexible beam. A distance between a tip of the first movement limiter and the flexible beam is adjustable.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: November 21, 2017
    Assignee: Seabed Geosolutions AS
    Inventors: Geir Valsvik, Arne Rokkan, Eldar Agdestein, Bjarne Isfeldt
  • Patent number: 9768626
    Abstract: Systems, methods, and apparatuses related to automatically and simultaneously charging a plurality of autonomous seismic nodes on a marine vessel before and/or after deployment to the seabed are disclosed. A plurality of autonomous seismic nodes are simultaneously charged in a CSC approved ISO container. Each autonomous seismic node may comprise a plurality of power connectors, a plurality of rechargeable batteries, and a battery management system. Each of the nodes may be configured to couple with a charging system on the marine vessel, which may include a power source, one or more power/charging stations, one or more power connectors, and a network. The node may have a plurality of power connectors disposed within a plurality of grooves that are configured to couple with a plurality of charging rails for simultaneous charging.
    Type: Grant
    Filed: August 18, 2015
    Date of Patent: September 19, 2017
    Assignee: SEABED GEOSOLUTIONS B.V.
    Inventors: Richard Edward Henman, Arne Henning Rokkan, Johan Fredrik Næs, Mariann Ervik, Leif Johan Larsen, Bjarne Isfeldt
  • Publication number: 20170133875
    Abstract: Embodiments of systems and methods for inductively powering seismic sensor nodes are presented. An embodiment of an inductive battery includes a battery cell configured to store charge for use by an external device. The inductive battery may also include a first inductive element coupled to the battery cell, the first inductive element configured to receive current from the battery cell and emit a responsive magnetic field for powering an external device through inductance. In an embodiment the external device is a seismic sensor node.
    Type: Application
    Filed: January 19, 2017
    Publication date: May 11, 2017
    Applicant: Seabed Geosolutions B.V.
    Inventor: Bjarne Isfeldt
  • Patent number: 9595833
    Abstract: Embodiments of systems and methods for inductively powering seismic sensor nodes are presented. An embodiment of an inductive battery includes a battery cell configured to store charge for use by an external device. The inductive battery may also include a first inductive element coupled to the battery cell, the first inductive element configured to receive current from the battery cell and emit a responsive magnetic field for powering an external device through inductance. In an embodiment the external device is a seismic sensor node.
    Type: Grant
    Filed: July 24, 2014
    Date of Patent: March 14, 2017
    Assignee: SEABED GEOSOLUTIONS B.V.
    Inventor: Bjarne Isfeldt
  • Publication number: 20160124105
    Abstract: Apparatuses, systems, and methods for guiding and/or positioning a plurality of seismic nodes on or near the seabed by an autonomous underwater vehicle (AUV) or a remotely operated vehicle (ROV). In one embodiment, an underwater vehicle is configured to monitor the deployment of cable connected to a plurality of seismic nodes, including the touchdown monitoring, positioning, and guiding of deployed autonomous seismic nodes or ocean bottom cable. The underwater vehicle may comprise a propulsion system configured to steer and propel the vehicle in a body of water, a tracking system configured to automatically track the cable and/or attached seismic nodes, and a guidance system configured to communicate with a surface vessel node data in real time or near real time for active guidance and/or positioning of the deployment cable.
    Type: Application
    Filed: October 28, 2015
    Publication date: May 5, 2016
    Applicant: SEABED GEOSOLUTIONS B.V.
    Inventors: Geir Valsvik, Arne Henning Rokkan, Jean-Baptiste Danre, Bjarne Isfeldt
  • Publication number: 20160121983
    Abstract: Apparatuses, systems, and methods for the deployment of a plurality of autonomous underwater seismic vehicles (AUVs) on or near the seabed based on acoustic communications with an underwater vehicle, such as a remotely operated vehicle. In an embodiment, the underwater vehicle is lowered from a surface vessel along with a subsea station with a plurality of AUVs. The AUVs are configured to acoustically communicate with the underwater vehicle or a second surface vessel for deployment and retrieval operations. The underwater vehicle and/or second surface vessel is configured to instruct the AUVs to leave the subsea station or underwater vehicle and to travel to their intended seabed destination. The underwater vehicle and/or second surface vessel is also configured to selectively instruct the AUVs to leave the seabed and return to a seabed location and/or a subsea station for retrieval.
    Type: Application
    Filed: October 27, 2015
    Publication date: May 5, 2016
    Applicant: SEABED GEOSOLUTIONS B.V.
    Inventors: Arne Henning Rokkan, Geir Valsvik, Bjarne Isfeldt, Jean-Baptiste Danre
  • Publication number: 20160094298
    Abstract: Apparatuses, systems, and methods for wireless data transfer on an autonomous seismic node are described. In an embodiment, an autonomous seismic node configured for wireless data transfer includes one or more power sources, one or more seismic sensors, one or more recording devices, and a wireless system. In one embodiment, the wireless system comprises a node electronics interface in data communication with one or more of the power sources, seismic sensors, and recording devices, and a wireless data communication interface for communication with an external data handling system. A communication system may include one or more vessel-based wireless systems configured to communicate with one or more node based wireless systems.
    Type: Application
    Filed: September 21, 2015
    Publication date: March 31, 2016
    Applicant: Seabed Geosolutions B.V.
    Inventors: Bjarne Isfeldt, Arne Henning Rokkan, Michael Todd, Martin Farnan
  • Publication number: 20160056645
    Abstract: Systems, methods, and apparatuses related to automatically and simultaneously charging a plurality of autonomous seismic nodes on a marine vessel before and/or after deployment to the seabed are disclosed. In one embodiment, a plurality of autonomous seismic nodes are simultaneously charged in a CSC approved ISO container. Each autonomous seismic node may comprise a plurality of power connectors, a plurality of rechargeable batteries, and a battery management system. Each of the nodes may be configured to couple with a charging system on the marine vessel, which may include a power source, one or more power/charging stations, one or more power connectors, and a network. In one embodiment, a storage rack in a container has a plurality of charging rails that the plurality of nodes can be placed upon for storage and charging. The node may have a plurality of power connectors disposed within a plurality of grooves that are configured to couple with the plurality of charging rails for simultaneous charging.
    Type: Application
    Filed: August 18, 2015
    Publication date: February 25, 2016
    Applicant: Seabed Geosolutions B.V.
    Inventors: Richard Edward Henman, Arne Henning Rokkan, Johan Fredrik Næs, Mariann Ervik, Leif Johan Larsen, Bjarne Isfeldt
  • Publication number: 20160028238
    Abstract: Embodiments of systems and methods for inductively powering seismic sensor nodes are presented. An embodiment of an inductive battery includes a battery cell configured to store charge for use by an external device. The inductive battery may also include a first inductive element coupled to the battery cell, the first inductive element configured to receive current from the battery cell and emit a responsive magnetic field for powering an external device through inductance. In an embodiment the external device is a seismic sensor node.
    Type: Application
    Filed: July 24, 2014
    Publication date: January 28, 2016
    Inventor: Bjarne Isfeldt
  • Publication number: 20150338433
    Abstract: A method and geophysical acceleration sensor (100) for measuring seismic data and also for protecting the sensor from shock. The sensor includes a housing (102); a flexible beam (104) having a first end fixedly attached to the housing; a piezoelectric layer (108) attached to the flexible beam; a seismic mass (112) attached to the flexible beam; and a first movement limiter (130) connected to the housing and configured to limit a movement of the flexible beam. A distance between a tip of the first movement limiter and the flexible beam is adjustable.
    Type: Application
    Filed: December 18, 2013
    Publication date: November 26, 2015
    Inventors: Geir VALSVIK, Arne ROKKAN, Eldar AGDESTEIN, Bjarne ISFELDT