Patents by Inventor Bjoern Pietzak

Bjoern Pietzak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8377997
    Abstract: A fullerene-based proton conductor including a proton conductive functional group connected to the fullerene by an at least partially fluorinated spacer molecule. Also, a polymer including at least two of the proton conductors that are connected by a linking molecule. Further, an electrochemical device employing the polymer as a proton exchange membrane, whereby the device is able to achieve a self-humidifying characteristic.
    Type: Grant
    Filed: January 5, 2010
    Date of Patent: February 19, 2013
    Assignee: Sony Corporation
    Inventors: Berthold Nuber, Bjoern Pietzak
  • Patent number: 8362096
    Abstract: A fullerene-based proton conductor including a proton conductive functional group connected to the fullerene by an at least partially fluorinated spacer molecule. Also, a polymer including at least two of the proton conductors that are connected by a linking molecule. Further, an electrochemical device employing the polymer as a proton exchange membrane, whereby the device is able to achieve a self-humidifying characteristic.
    Type: Grant
    Filed: November 10, 2009
    Date of Patent: January 29, 2013
    Assignee: Sony Corporation
    Inventors: Berthold Nuber, Bjoern Pietzak
  • Patent number: 7771891
    Abstract: Disclosed herein are an ionic conductor including a proton conductor, a process for production thereof, and an electrochemical device (such as fuel cell) with said ionic conductor, said ionic conductor being superior in ionic conductivity, water resistance, and film forming properties. The ionic conductor is formed from a polymer in which carbon clusters having ion dissociating functional groups are bonded to each other through connecting groups. The polymer is less water-soluble and more chemically stable than a derivative composed solely of carbon clusters; therefore, it permits many ion dissociating functional group to be introduced thereinto. Moreover, if ion dissociating functional groups are introduced into also the connecting group, it is possible to prevent the concentration of ion dissociating functional groups from decreasing as the result of polymerization. The polymer can be easily synthesized by simple condensation, substitution, and hydrolysis.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: August 10, 2010
    Assignee: Sony Corporation
    Inventors: Koichiro Hinokuma, Bjoern Pietzak, Constance Gertrud Rost, Masafumi Ata, Yongming Li, Kazuaki Fukushima
  • Patent number: 7732502
    Abstract: A fullerene-based proton conductor including a proton conductive functional group connected to the fullerene by an at least partially fluorinated spacer molecule. Also, a polymer including at least two of the proton conductors that are connected by a linking molecule. Further, an electrochemical device employing the polymer as a proton exchange membrane, whereby the device is able to achieve a self-humidifying characteristic.
    Type: Grant
    Filed: October 19, 2006
    Date of Patent: June 8, 2010
    Assignee: Sony Corporation
    Inventors: Berthold Nuber, Bjoern Pietzak
  • Patent number: 7732501
    Abstract: A fullerene-based proton conductor including a proton conductive functional group connected to the fullerene by an at least partially fluorinated spacer molecule. Also, a polymer including at least two of the proton conductors that are connected by a linking molecule. Further, an electrochemical device employing the polymer as a proton exchange membrane, whereby the device is able to achieve a self-humidifying characteristic.
    Type: Grant
    Filed: October 19, 2006
    Date of Patent: June 8, 2010
    Assignee: Sony Corporation
    Inventors: Berthold Nuber, Bjoern Pietzak
  • Publication number: 20100120927
    Abstract: A fullerene-based proton conductor including a proton conductive functional group connected to the fullerene by an at least partially fluorinated spacer molecule. Also, a polymer including at least two of the proton conductors that are connected by a linking molecule. Further, an electrochemical device employing the polymer as a proton exchange membrane, whereby the device is able to achieve a self-humidifying characteristic.
    Type: Application
    Filed: January 5, 2010
    Publication date: May 13, 2010
    Applicant: SONY CORPORATION
    Inventors: Berthold Nuber, Bjoern Pietzak
  • Publication number: 20100075197
    Abstract: A fullerene-based proton conductor including a proton conductive functional group connected to the fullerene by an at least partially fluorinated spacer molecule. Also, a polymer including at least two of the proton conductors that are connected by a linking molecule. Further, an electrochemical device employing the polymer as a proton exchange membrane, whereby the device is able to achieve a self-humidifying characteristic.
    Type: Application
    Filed: November 10, 2009
    Publication date: March 25, 2010
    Applicant: SONY CORPORATION
    Inventors: Berthold Nuber, Bjoern Pietzak
  • Patent number: 7674544
    Abstract: A fullerene-based proton conductor including a proton conductive functional group connected to the fullerene by an at least partially fluorinated spacer molecule. Also, a polymer including at least two of the proton conductors that are connected by a linking molecule. Further, an electrochemical device employing the polymer as a proton exchange membrane, whereby the device is able to achieve a self-humidifying characteristic.
    Type: Grant
    Filed: October 19, 2006
    Date of Patent: March 9, 2010
    Assignee: Sony Corporation
    Inventors: Berthold Nuber, Bjoern Pietzak
  • Patent number: 7651803
    Abstract: Disclosed herein are an ionic conductor including a proton conductor, a process for production thereof, and an electrochemical device (such as fuel cell) with said ionic conductor, said ionic conductor being superior in ionic conductivity, water resistance, and film forming properties. The ionic conductor is formed from a polymer in which carbon clusters having ion dissociating functional groups are bonded to each other through connecting groups. The polymer is less water-soluble and more chemically stable than a derivative composed solely of carbon clusters; therefore, it permits many ion dissociating functional group to be introduced thereinto. Moreover, if ion dissociating functional groups are introduced into also the connecting group, it is possible to prevent the concentration of ion dissociating functional groups from decreasing as the result of polymerization. The polymer can be easily synthesized by simple condensation, substitution, and hydrolysis.
    Type: Grant
    Filed: November 20, 2006
    Date of Patent: January 26, 2010
    Assignee: Sony Corporation
    Inventors: Koichiro Hinokuma, Bjoern Pietzak, Constance Gertrud Rost, Masafumi Ata, Yongming Li, Kazuaki Fukushima
  • Publication number: 20090105357
    Abstract: Disclosed herein are an ionic conductor including a proton conductor, a process for production thereof, and an electrochemical device (such as fuel cell) with said ionic conductor, said ionic conductor being superior in ionic conductivity, water resistance, and film forming properties. The ionic conductor is formed from a polymer in which carbon clusters having ion dissociating functional groups are bonded to each other through connecting groups. The polymer is less water-soluble and more chemically stable than a derivative composed solely of carbon clusters; therefore, it permits many ion dissociating functional group to be introduced thereinto. Moreover, if ion dissociating functional groups are introduced into also the connecting group, it is possible to prevent the concentration of ion dissociating functional groups from decreasing as the result of polymerization. The polymer can be easily synthesized by simple condensation, substitution, and hydrolysis.
    Type: Application
    Filed: December 19, 2008
    Publication date: April 23, 2009
    Applicant: SONY CORPORATION
    Inventors: Koichiro Hinokuma, Bjoern Pietzak, Constance Gertrud Rost, Masafumi Ata, Yongming Li, Kazuaki Fukushima
  • Publication number: 20070259977
    Abstract: A fullerene-based proton conductor including a proton conductive functional group connected to the fullerene by an at least partially fluorinated spacer molecule. Also, a polymer including at least two of the proton conductors that are connected by a linking molecule. Further, an electrochemical device employing the polymer as a proton exchange membrane, whereby the device is able to achieve a self-humidifying characteristic.
    Type: Application
    Filed: October 19, 2006
    Publication date: November 8, 2007
    Applicant: SONY CORPORATION
    Inventors: Berthold Nuber, Bjoern Pietzak
  • Publication number: 20070219385
    Abstract: A fullerene-based proton conductor including a proton conductive functional group connected to the fullerene by an at least partially fluorinated spacer molecule. Also, a polymer including at least two of the proton conductors that are connected by a linking molecule. Further, an electrochemical device employing the polymer as a proton exchange membrane, whereby the device is able to achieve a self-humidifying characteristic.
    Type: Application
    Filed: October 19, 2006
    Publication date: September 20, 2007
    Applicant: SONY CORPORATION
    Inventors: Berthold Nuber, Bjoern Pietzak
  • Publication number: 20070092800
    Abstract: Disclosed herein are an ionic conductor including a proton conductor, a process for production thereof, and an electrochemical device (such as fuel cell) with said ionic conductor, said ionic conductor being superior in ionic conductivity, water resistance, and film forming properties. The ionic conductor is formed from a polymer in which carbon clusters having ion dissociating functional groups are bonded to each other through connecting groups. The polymer is less water-soluble and more chemically stable than a derivative composed solely of carbon clusters; therefore, it permits many ion dissociating functional group to be introduced thereinto. Moreover, if ion dissociating functional groups are introduced into also the connecting group, it is possible to prevent the concentration of ion dissociating functional groups from decreasing as the result of polymerization. The polymer can be easily synthesized by simple condensation, substitution, and hydrolysis.
    Type: Application
    Filed: November 20, 2006
    Publication date: April 26, 2007
    Applicant: Sony Corporation
    Inventors: Koichiro Hinokuma, Bjoern Pietzak, Constance Rost, Masafumi Ata, Yongming Li, Kazuaki Fukushima
  • Publication number: 20070087247
    Abstract: A fullerene-based proton conductor including a proton conductive functional group connected to the fullerene by an at least partially fluorinated spacer molecule. Also, a polymer including at least two of the proton conductors that are connected by a linking molecule. Further, an electrochemical device employing the polymer as a proton exchange membrane, whereby the device is able to achieve a self-humidifying characteristic.
    Type: Application
    Filed: October 19, 2006
    Publication date: April 19, 2007
    Applicant: SONY CORPORATION
    Inventors: Berthold Nuber, Bjoern Pietzak
  • Patent number: 7198863
    Abstract: A fullerene-based proton conductor including a proton conductive functional group connected to the fullerene by an at least partially fluorinated spacer molecule. Also, a polymer including at least two of the proton conductors that are connected by a linking molecule. Further, an electrochemical device employing the polymer as a proton exchange membrane, whereby the device is able to achieve a self-humidifying characteristic.
    Type: Grant
    Filed: November 10, 2004
    Date of Patent: April 3, 2007
    Assignee: Sony Corporation
    Inventors: Berthold Nuber, Bjoern Pietzak
  • Patent number: 7157183
    Abstract: A proton conductor mainly contains a carbonaceous material derivative, such as, a fullerene derivative, a carbon cluster derivative, or a tubular carbonaceous material derivative in which groups capable of transferring protons, for example, —OH groups or —OSO3H groups are introduced to carbon atoms of the carbonaceous material derivative. The proton conductor is produced typically by compacting a powder of the carbonaceous material derivative. The proton conductor is usable, even in a dry state, in a wide temperature range including ordinary temperature. In particular, the proton conductor mainly containing the carbon cluster derivative is advantageous in increasing the strength and extending the selection range of raw materials. An electrochemical device, such as, a fuel cell, that employs the proton conductor is not limited by atmospheric conditions and can be of a small and simple construction.
    Type: Grant
    Filed: June 14, 2002
    Date of Patent: January 2, 2007
    Assignee: Sony Corporation
    Inventors: Koichiro Hinokuma, Björn Pietzak, Constance Gertrud Rost, Masafumi Ata
  • Patent number: 7153608
    Abstract: An ionic conductor, such as a proton conductor, a process for production thereof, and an electrochemical device, such as fuel cell, that includes the ionic conductor is provided. The ionic conductor of the present invention is formed from a polymer in which carbon clusters having ion dissociating functional groups are bonded to each other through connecting groups which can also include one or more ion dissociating functional groups. In this regard, the polymer is less water-soluble and more chemically stable than a derivative composed solely of carbon clusters, thus displaying enhanced ionic conduction properties.
    Type: Grant
    Filed: October 25, 2002
    Date of Patent: December 26, 2006
    Assignee: Sony Corporation
    Inventors: Koichiro Hinokuma, Bjoern Pietzak, Constance Gertrud Rost, Masafumi Ata, Yongming Li, Kazuaki Fukushima
  • Patent number: 7008713
    Abstract: A fullerene-based proton conductor including a proton conductive functional group connected to the fullerene by an at least partially fluorinated spacer molecule. Also, a polymer including at least two of the proton conductors that are connected by a linking molecule. Further, an electrochemical device employing the polymer as a proton exchange membrane, whereby the device is able to achieve a self-humidifying characteristic.
    Type: Grant
    Filed: November 10, 2004
    Date of Patent: March 7, 2006
    Assignee: Sony Corporation
    Inventors: Berthold Nuber, Bjoern Pietzak
  • Publication number: 20050214615
    Abstract: A fullerene-based proton conductor including a proton conductive functional group connected to the fullerene by an at least partially fluorinated spacer molecule. Also, a polymer including at least two of the proton conductors that are connected by a linking molecule. Further, an electrochemical device employing the polymer as a proton exchange membrane, whereby the device is able to achieve a self-humidifying characteristic.
    Type: Application
    Filed: November 10, 2004
    Publication date: September 29, 2005
    Inventors: Berthold Nuber, Bjoern Pietzak
  • Patent number: 6890676
    Abstract: A fullerene-based proton conductor including a proton conductive functional group connected to the fullerene by an at least partially fluorinated spacer molecule. Also, a polymer including at least two of the proton conductors that are connected by a linking molecule. Further, an electrochemical device employing the polymer as a proton exchange membrane, whereby the device is able to achieve a self-humidifying characteristic.
    Type: Grant
    Filed: April 1, 2002
    Date of Patent: May 10, 2005
    Assignee: Sony Corporation
    Inventors: Berthold Nuber, Bjoern Pietzak