Patents by Inventor Bjorn Moden

Bjorn Moden has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8512659
    Abstract: There is disclosed iron-containing aluminosilicate zeolites having both framework iron and iron cations on the ion-exchange sites. There is also disclosed a direct synthesis method of making an iron-containing aluminosilicate zeolite, which does not require the use of an intermediate step, such as ion-exchange or impregnation. In addition, there is disclosed a method of using the iron-containing aluminosilicate zeolite disclosed herein in a selective catalytic reduction reaction, typically in the presence of ammonia, to reduce or remove nitric oxides from exhaust emissions.
    Type: Grant
    Filed: February 16, 2010
    Date of Patent: August 20, 2013
    Assignee: PQ Corporation
    Inventors: Hong-Xin Li, William E. Cormier, Bjorn Moden
  • Publication number: 20120269719
    Abstract: There is disclosed a method to synthesize microporous crystalline material comprising a metal containing chabazite having a crystal size greater than 0.5 microns and a silica-to-alumina ratio (SAR) between 5 and 15, wherein the method is carried out without the use of an organic structural directing agent and without requiring calcination. There is also disclosed a large crystal organic free chabazite made according to the disclosed method. In addition, there are disclosed methods of using the disclosed crystalline material, such as in the selective catalytic reduction of NOx in exhaust gases.
    Type: Application
    Filed: April 17, 2012
    Publication date: October 25, 2012
    Applicant: PQ CORPORATION
    Inventors: Bjorn Moden, David Cooper, Hong-Xin Li, William E. Cormier
  • Publication number: 20120251422
    Abstract: There is disclosed a method of making, through direct synthesis, a catalyst comprising an Fe-SAPO-34 molecular sieve. There is also disclosed an Fe-SAPO-34 molecular sieve made according to the disclosed method herein, wherein the molecular sieve contains both framework iron and iron cations at ion-exchange sites. In addition, there is disclosed a method of using the Fe-SAPO-34 disclosed herein in a selective catalytic reduction reaction, typically in the presence of ammonia or urea, to reduce or remove nitric oxides from exhaust emissions.
    Type: Application
    Filed: April 3, 2012
    Publication date: October 4, 2012
    Inventors: Hong-Xin Li, William E. Cormier, Bjorn Moden
  • Publication number: 20110286914
    Abstract: There is disclosed an organic-free, metal-containing zeolite Beta with a silica-to-alumina ratio (SAR) ranging from 5 and 20, and a metal content of at least 0.5 wt. %. There is also disclosed a method of making such a zeolite Beta without organic structure directing agent (SDA). The metal, which may comprise Fe or Cu, can be found in amounts ranging from 1-10 wt. %. A method of selective catalytic reduction of nitrogen oxides in exhaust gases using the disclosed zeolite is also disclosed.
    Type: Application
    Filed: May 18, 2011
    Publication date: November 24, 2011
    Inventors: Hong-Xin Li, William E. Cormier, Bjorn Moden
  • Patent number: 7883678
    Abstract: There is disclosed a hydrothermally stable microporous crystalline material comprising a molecular sieve or zeolite having an 8-ring pore opening structure, such as SAPO-34 or aluminosilicate zeolite, able to retain a specific percentage of its surface area and micropore volume after treatment with heat and moisture, such as at least 80% of its surface area and micropore volume after exposure to temperatures of up to 900° C. in the presence of up to 10 volume percent water vapor for a time ranging from 1 to 16 hours. Methods of using the disclosed crystalline material, such as in the SCR of NOx in exhaust gas are also disclosed, as are methods of making such materials.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: February 8, 2011
    Assignee: PQ Corporation
    Inventors: Hong-Xin Li, William E. Cormier, Bjorn Moden
  • Patent number: 7868201
    Abstract: A process for the oxidation of hydrocarbons comprises contacting the hydrocarbon with an oxygen-containing gas in the presence of a catalyst comprising a microporous solid support, preferably a zeolite, having from 8- to 12-ring open windows and comprising non-framework metal cations selected from manganese, iron, cobalt, vanadium, chromium, copper, nickel, and ruthenium, and mixtures thereof, providing that the oxygen-containing gas does not contain significant amounts of added hydrogen. The catalyst is novel and forms part of the invention. The process may be used for oxidation of alkanes, cycloalkanes, benzene and alkylbenzenes, and is suitable for use in regioselective terminal oxidation of straight chain alkanes and for selective oxidation/separation of p-dialkylbenzenes from an alkylbenzene mixture, for example, p-xylene from an isomeric mixture of xylenes.
    Type: Grant
    Filed: July 1, 2005
    Date of Patent: January 11, 2011
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Bi-Zeng Zhan, Bjorn Moden, Jihad Dakka, Jose Santiesteban, Sebastian C. Reyes, Enrique Iglesia
  • Publication number: 20100143224
    Abstract: There is disclosed iron-containing aluminosilicate zeolites having both framework iron and iron cations on the ion-exchange sites. There is also disclosed a direct synthesis method of making an iron-containing aluminosilicate zeolite, which does not require the use of an intermediate step, such as ion-exchange or impregnation. In addition, there is disclosed a method of using the iron-containing aluminosilicate zeolite disclosed herein in a selective catalytic reduction reaction, typically in the presence of ammonia, to reduce or remove nitric oxides from exhaust emissions.
    Type: Application
    Filed: February 16, 2010
    Publication date: June 10, 2010
    Inventors: Hong-Xin Li, William E. Cormier, Bjorn Moden
  • Publication number: 20100092362
    Abstract: There is disclosed a microporous crystalline material comprising a metal containing chabazite having a crystal size greater than 0.5 microns and a silica-to-alumina ratio (SAR) greater than 15, wherein the metal containing chabazite retains at least 80% of its initial surface area and micropore volume after exposure to temperatures of up to 900° C. in the presence of up to 10 volume percent water vapor for up to 1 hour. Methods of using the disclosed crystalline material, such as in the SCR of NOx in exhaust gas are also disclosed, as are methods of making such materials.
    Type: Application
    Filed: December 17, 2009
    Publication date: April 15, 2010
    Inventors: Hong-Xin LI, William E. Cormier, Bjorn Moden
  • Publication number: 20100092361
    Abstract: There is disclosed a hydrothermally stable microporous crystalline material comprising a molecular sieve or zeolite having an 8-ring pore opening structure, such as SAPO-34 or aluminosilicate zeolite, able to retain a specific percentage of its surface area and micropore volume after treatment with heat and moisture, such as at least 80% of its surface area and micropore volume after exposure to temperatures of up to 900° C. in the presence of up to 10 volume percent water vapor for a time ranging from 1 to 16 hours. Methods of using the disclosed crystalline material, such as in the SCR of NOx in exhaust gas are also disclosed, as are methods of making such materials.
    Type: Application
    Filed: October 1, 2009
    Publication date: April 15, 2010
    Inventors: Hong-Xin LI, William E. Cormier, Bjorn Moden
  • Patent number: 7645718
    Abstract: There is disclosed a hydrothermally stable microporous crystalline material comprising a molecular sieve or zeolite having an 8-ring pore opening structure, such as SAPO-34 or aluminosilicate zeolite, able to retain a specific percentage of its surface area and micropore volume after treatment with heat and moisture, such as at least 80% of its surface area and micropore volume after exposure to temperatures of up to 900° C. in the presence of up to 10 volume percent water vapor for a time ranging from 1 to 16 hours. Methods of using the disclosed crystalline material, such as in the SCR of NOx in exhaust gas are also disclosed, as are methods of making such materials.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: January 12, 2010
    Assignee: PQ Corporation
    Inventors: Hong-Xin Li, William E. Cormier, Bjorn Moden
  • Publication number: 20090048095
    Abstract: There is disclosed iron-containing aluminosilicate zeolites having both framework iron and iron cations on the ion-exchange sites. There is also disclosed a direct synthesis method of making an iron-containing aluminosilicate zeolite, which does not require the use of an intermediate step, such as ion-exchange or impregnation. In addition, there is disclosed a method of using the iron-containing aluminosilicate zeolite disclosed herein in a selective catalytic reduction reaction, typically in the presence of ammonia, to reduce or remove nitric oxides from exhaust emissions.
    Type: Application
    Filed: August 13, 2008
    Publication date: February 19, 2009
    Inventors: Hong-Xin LI, William E. Cormier, Bjorn Moden
  • Publication number: 20080241060
    Abstract: There is disclosed a hydrothermally stable microporous crystalline material comprising a molecular sieve or zeolite having an 8-ring pore opening structure, such as SAPO-34 or aluminosilicate zeolite, able to retain a specific percentage of its surface area and micropore volume after treatment with heat and moisture, such as at least 80% of its surface area and micropore volume after exposure to temperatures of up to 900° C. in the presence of up to 10 volume percent water vapor for a time ranging from 1 to 16 hours. Methods of using the disclosed crystalline material, such as in the SCR of NOx in exhaust gas are also disclosed, as are methods of making such materials.
    Type: Application
    Filed: March 26, 2008
    Publication date: October 2, 2008
    Inventors: Hong-Xin Li, William E. Cormier, Bjorn Moden
  • Publication number: 20070004944
    Abstract: A process for the oxidation of hydrocarbons comprises contacting the hydrocarbon with an oxygen-containing gas in the presence of a catalyst comprising a microporous solid support, preferably a zeolite, having from 8- to 12-ring open windows and comprising non-framework metal cations selected from manganese, iron, cobalt, vanadium, chromium, copper, nickel, and ruthenium, and mixtures thereof, providing that the oxygen-containing gas does not contain significant amounts of added hydrogen. The catalyst is novel and forms part of the invention. The process may be used for oxidation of alkanes, cycloalkanes, benzene and alkylbenzenes, and is suitable for use in regioselective terminal oxidation of straight chain alkanes and for selective oxidation/separation of p-dialkylbenzenes from an alkylbenzene mixture, for example, p-xylene from an isomeric mixture of xylenes.
    Type: Application
    Filed: July 1, 2005
    Publication date: January 4, 2007
    Applicants: The Regents of the University of California, Exxon Mobil Research and Engineering Company
    Inventors: Bi-Zeng Zhan, Bjorn Moden, Jihad Dakka, Jose Santiesteban, Sebastian Reyes, Enrique Iglesia