Patents by Inventor Bjorn Nicolaas Servatius Vlaskamp

Bjorn Nicolaas Servatius Vlaskamp has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240134184
    Abstract: An image display system includes an optical subsystem configured to emit a modulated light beam, and a scanning mirror for generating a reflected light beam that is scanned according to randomly selected or pseudo-randomly selected scan patterns to generate multiple image fields of a multiple interlaced scan image. A plurality of different scan patterns can be cycled through, randomly or pseudo-randomly selected, for the different image fields to reduce artifacts that may be observed while viewing a projected image.
    Type: Application
    Filed: December 29, 2023
    Publication date: April 25, 2024
    Applicant: Magic Leap, Inc.
    Inventors: Lionel Ernest Edwin, Björn Nicolaas Servatius Vlaskamp, Samuel A. Miller, Aaron M. Clarke
  • Publication number: 20240134191
    Abstract: A wearable device includes a left optical stack having a left eyepiece configured to receive left virtual image light, a left accommodating lens, and a left compensating lens. The wearable device also includes a right optical stack having a right eyepiece configured to receive right virtual image light, a right accommodating lens, and a right compensating lens. An optical power of the left accommodating lens is equal in magnitude to an optical power of the left compensating lens, an optical power of the right accommodating lens is equal in magnitude to an optical power of the right compensating lens, and the optical power of the left accommodating lens and the optical power of the right accommodating lens differ by an offset amount.
    Type: Application
    Filed: December 29, 2023
    Publication date: April 25, 2024
    Applicant: Magic Leap, Inc.
    Inventors: Bjorn Nicolaas Servatius Vlaskamp, Jason Allen Shultz, William Hudson Welch, Bing Wu
  • Publication number: 20240126086
    Abstract: Systems and methods are disclosed for operating a head-mounted display system based on user perceptibility. The display system may be an augmented reality display system configured to provide virtual content on a plurality of depth planes by presenting the content with different amounts of wavefront divergence. Some embodiments include obtaining an image captured by an imaging device of the display system. Whether a threshold measure or more of motion blur is determined to be exhibited in one or more regions of the image. Based on a determination that the threshold measure or more of motion blur is exhibited in one or more regions of the image, one or more operating parameters of the wearable display are adjusted. Example operating parameter adjustments comprise adjusting the depth plane on which content is presented (e.g., by switching from a first depth plane to a second depth plane), adjusting a rendering quality, and adjusting power characteristics of the system.
    Type: Application
    Filed: December 22, 2023
    Publication date: April 18, 2024
    Inventors: Lionel Ernest Edwin, Ivan Li Chuen Yeoh, Samuel A. Miller, Edwin Joseph Selker, Adam Charles Carlson, Bjorn Nicolaas Servatius Vlaskamp, Paul M. Greco
  • Patent number: 11899200
    Abstract: An image display system includes an optical subsystem configured to emit a modulated light beam, and a scanning mirror for generating a reflected light beam that is scanned according to randomly selected or pseudo-randomly selected scan patterns to generate multiple image fields of a multiple interlaced scan image. A plurality of different scan patterns can be cycled through, randomly or pseudo-randomly selected, for the different image fields to reduce artifacts that may be observed while viewing a projected image.
    Type: Grant
    Filed: April 16, 2021
    Date of Patent: February 13, 2024
    Assignee: Magic Leap, Inc.
    Inventors: Lionel Ernest Edwin, Bjorn Nicolaas Servatius Vlaskamp, Samuel A. Miller, Aaron M. Clarke
  • Patent number: 11892636
    Abstract: Systems and methods are disclosed for operating a head-mounted display system based on user perceptibility. The display system may be an augmented reality display system configured to provide virtual content on a plurality of depth planes by presenting the content with different amounts of wavefront divergence. Some embodiments include obtaining an image captured by an imaging device of the display system. Whether a threshold measure or more of motion blur is determined to be exhibited in one or more regions of the image. Based on a determination that the threshold measure or more of motion blur is exhibited in one or more regions of the image, one or more operating parameters of the wearable display are adjusted. Example operating parameter adjustments comprise adjusting the depth plane on which content is presented (e.g., by switching from a first depth plane to a second depth plane), adjusting a rendering quality, and adjusting power characteristics of the system.
    Type: Grant
    Filed: July 15, 2021
    Date of Patent: February 6, 2024
    Assignee: MAGIC LEAP, INC.
    Inventors: Lionel Ernest Edwin, Ivan Li Chuen Yeoh, Samuel A. Miller, Edwin Joseph Selker, Adam Charles Carlson, Bjorn Nicolaas Servatius Vlaskamp, Paul M. Greco
  • Publication number: 20240036645
    Abstract: A wearable device may include a head-mounted display (HMD) for rendering a three-dimensional (3D) virtual object which appears to be located in an ambient environment of a user of the display. The relative positions of the HMD and one or more eyes of the user may not be in desired positions to receive image information outputted by the HMD. For example, the HAMID-to-eye vertical alignment may be different between the left and right eyes. The wearable device may determine if the HMD is level on the user's head and may then provide the user with a left-eye alignment marker and a right-eye alignment marker. Based on user feedback, the wearable device may determine if there is any left-right vertical misalignment and may take actions to reduce or minimize the effects of any misalignment.
    Type: Application
    Filed: October 13, 2023
    Publication date: February 1, 2024
    Inventor: Bjorn Nicolaas Servatius Vlaskamp
  • Patent number: 11822718
    Abstract: A wearable device may include a head-mounted display (HMD) for rendering a three-dimensional (3D) virtual object which appears to be located in an ambient environment of a user of the display. The relative positions of the HMD and one or more eyes of the user may not be in desired positions to receive image information outputted by the HMD. For example, the HMD-to-eye vertical alignment may be different between the left and right eyes. The wearable device may determine if the HMD is level on the user's head and may then provide the user with a left-eye alignment marker and a right-eye alignment marker. Based on user feedback, the wearable device may determine if there is any left-right vertical misalignment and may take actions to reduce or minimize the effects of any misalignment.
    Type: Grant
    Filed: August 18, 2022
    Date of Patent: November 21, 2023
    Inventor: Bjorn Nicolaas Servatius Vlaskamp
  • Publication number: 20230333369
    Abstract: Optical systems and methods for operation thereof are disclosed. A delimited zone is defined as a function of distance from the optical system based on a VAC limit, the delimited zone having at least one distance threshold. A virtual distance of a virtual depth plane from the optical system at which a virtual object is to be displayed is determined. It is determined whether the virtual distance is outside the delimited zone by comparing the virtual distance to the at least one distance threshold. A collimated pixel beam associated with the virtual object is generated by a projector of the optical system. The collimated pixel beam is modified to generate a modified pixel beam if the virtual distance is outside the delimited zone. Modifying the collimated pixel beam includes converging the collimated pixel beam and/or reducing a diameter of the collimated pixel beam.
    Type: Application
    Filed: June 23, 2023
    Publication date: October 19, 2023
    Applicant: Magic Leap, Inc.
    Inventors: Michael Anthony Klug, William Hudson Welch, Jason Schaefer, Björn Nicolaas Servatius Vlaskamp, Robert D. Tekolste, Michal Beau Dennison Vaughn
  • Publication number: 20230317033
    Abstract: Methods and systems for depth-based foveated rendering in the display system are disclosed. The display system may be an augmented reality display system configured to provide virtual content on a plurality of depth planes using different wavefront divergence. Some embodiments include determining a fixation point of a user's eyes. Location information associated with a first virtual object to be presented to the user via a display device is obtained. A resolution-modifying parameter of the first virtual object is obtained. A particular resolution at which to render the first virtual object is identified based on the location information and the resolution-modifying parameter of the first virtual object. The particular resolution is based on a resolution distribution specifying resolutions for corresponding distances from the fixation point. The first virtual object rendered at the identified resolution is presented to the user via the display system.
    Type: Application
    Filed: June 7, 2023
    Publication date: October 5, 2023
    Inventors: Vaibhav MATHUR, Lionel Ernest EDWIN, Xiaoyang ZHANG, Bjorn Nicolaas Servatius VLASKAMP
  • Patent number: 11726318
    Abstract: Optical systems and methods for operation thereof are disclosed. A delimited zone is defined as a function of distance from the optical system based on a VAC limit, the delimited zone having at least one distance threshold. A virtual distance of a virtual depth plane from the optical system at which a virtual object is to be displayed is determined. It is determined whether the virtual distance is outside the delimited zone by comparing the virtual distance to the at least one distance threshold. A collimated pixel beam associated with the virtual object is generated by a projector of the optical system. The collimated pixel beam is modified to generate a modified pixel beam if the virtual distance is outside the delimited zone. Modifying the collimated pixel beam includes converging the collimated pixel beam and/or reducing a diameter of the collimated pixel beam.
    Type: Grant
    Filed: December 9, 2020
    Date of Patent: August 15, 2023
    Assignee: Magic Leap, Inc.
    Inventors: Michael Anthony Klug, William Hudson Welch, Jason Schaefer, Björn Nicolaas Servatius Vlaskamp, Robert D. Tekolste, Michael Beau Dennison Vaughn
  • Patent number: 11710469
    Abstract: Methods and systems for depth-based foveated rendering in the display system are disclosed. The display system may be an augmented reality display system configured to provide virtual content on a plurality of depth planes using different wavefront divergence. Some embodiments include determining a fixation point of a user's eyes. Location information associated with a first virtual object to be presented to the user via a display device is obtained. A resolution-modifying parameter of the first virtual object is obtained. A particular resolution at which to render the first virtual object is identified based on the location information and the resolution-modifying parameter of the first virtual object. The particular resolution is based on a resolution distribution specifying resolutions for corresponding distances from the fixation point. The first virtual object rendered at the identified resolution is presented to the user via the display system.
    Type: Grant
    Filed: January 21, 2022
    Date of Patent: July 25, 2023
    Assignee: Magic Leap, Inc.
    Inventors: Vaibhav Mathur, Lionel Ernest Edwin, Xiaoyang Zhang, Bjorn Nicolaas Servatius Vlaskamp
  • Publication number: 20230099062
    Abstract: Augmented and virtual reality display systems increase viewer comfort by reducing viewer exposure to virtual content that causes undesirable accommodation-vergence mismatches (AVM). The display systems limit displaying content that exceeds an accommodation-vergence mismatch threshold, which may define a volume around the viewer. The volume may be subdivided into two or more zones, including an innermost loss-of-fusion zone (LoF) in which no content is displayed, and one or more outer AVM zones in which the displaying of content may be stopped, or clipped, under certain conditions. For example, content may be clipped if the viewer is verging within an AVM zone and if the content is displayed within the AVM zone for more than a threshold duration. A further possible condition for clipping content is that the user is verging on that content.
    Type: Application
    Filed: December 8, 2022
    Publication date: March 30, 2023
    Inventors: Brian David Schwab, Randall E. Hand, Björn Nicolaas Servatius Vlaskamp
  • Patent number: 11532118
    Abstract: Augmented and virtual reality display systems increase viewer comfort by reducing viewer exposure to virtual content that causes undesirable accommodation-vergence mismatches (AVM). The display systems limit displaying content that exceeds an accommodation-vergence mismatch threshold, which may define a volume around the viewer. The volume may be subdivided into two or more zones, including an innermost loss-of-fusion zone (LoF) in which no content is displayed, and one or more outer AVM zones in which the displaying of content may be stopped, or clipped, under certain conditions. For example, content may be clipped if the viewer is verging within an AVM zone and if the content is displayed within the AVM zone for more than a threshold duration. A further possible condition for clipping content is that the user is verging on that content.
    Type: Grant
    Filed: December 23, 2020
    Date of Patent: December 20, 2022
    Assignee: Magic Leap, Inc.
    Inventors: Brian David Schwab, Randall E. Hand, Björn Nicolaas Servatius Vlaskamp
  • Publication number: 20220391013
    Abstract: A wearable device may include a head-mounted display (HMD) for rendering a three-dimensional (3D) virtual object which appears to be located in an ambient environment of a user of the display. The relative positions of the HMD and one or more eyes of the user may not be in desired positions to receive image information outputted by the HMD. For example, the HMD-to-eye vertical alignment may be different between the left and right eyes. The wearable device may determine if the HMD is level on the user's head and may then provide the user with a left-eye alignment marker and a right-eye alignment marker. Based on user feedback, the wearable device may determine if there is any left-right vertical misalignment and may take actions to reduce or minimize the effects of any misalignment.
    Type: Application
    Filed: August 18, 2022
    Publication date: December 8, 2022
    Inventor: Bjorn Nicolaas Servatius Vlaskamp
  • Patent number: 11422620
    Abstract: A wearable device may include a head-mounted display (HMD) for rendering a three-dimensional (3D) virtual object which appears to be located in an ambient environment of a user of the display. The relative positions of the HMD and one or more eyes of the user may not be in desired positions to receive image information outputted by the HMD. For example, the HMD-to-eye vertical alignment may be different between the left and right eyes. The wearable device may determine if the HMD is level on the user's head and may then provide the user with a left-eye alignment marker and a right-eye alignment marker. Based on user feedback, the wearable device may determine if there is any left-right vertical misalignment and may take actions to reduce or minimize the effects of any misalignment.
    Type: Grant
    Filed: July 24, 2019
    Date of Patent: August 23, 2022
    Assignee: Magic Leap, Inc.
    Inventor: Bjorn Nicolaas Servatius Vlaskamp
  • Publication number: 20220148538
    Abstract: Methods and systems for depth-based foveated rendering in the display system are disclosed. The display system may be an augmented reality display system configured to provide virtual content on a plurality of depth planes using different wavefront divergence. Some embodiments include determining a fixation point of a user's eyes. Location information associated with a first virtual object to be presented to the user via a display device is obtained. A resolution-modifying parameter of the first virtual object is obtained. A particular resolution at which to render the first virtual object is identified based on the location information and the resolution-modifying parameter of the first virtual object. The particular resolution is based on a resolution distribution specifying resolutions for corresponding distances from the fixation point. The first virtual object rendered at the identified resolution is presented to the user via the display system.
    Type: Application
    Filed: January 21, 2022
    Publication date: May 12, 2022
    Inventors: Vaibhav Mathur, Lionel Ernest Edwin, Xiaoyang Zhang, Bjorn Nicolaas Servatius Vlaskamp
  • Patent number: 11291402
    Abstract: According to an aspect, there is provided a computer-implemented method for determining an indication of visual attention/motoric dysfunction of a subject and/or an indication of executive cognitive dysfunction of the subject during or following a test comprising a plurality of targets that are to be completed by the subject, the method comprising the steps of receiving information on the time taken to complete each of the plurality of targets by the subject; determining a regression line for the subject based on the received information on the time taken to complete each of the plurality of targets and information on the time taken to complete each of the plurality of targets for a reference group of subjects; determining an indication of visual attention/motoric dysfunction of the subject based on a slope of the determined regression line and/or an indication of executive cognitive dysfunction of the subject based on an offset of the determined regression line; and outputting the indication of the visual at
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: April 5, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Bjorn Nicolaas Servatius Vlaskamp, Laura Klaming, Murray Fulton Gillies
  • Patent number: 11237669
    Abstract: The invention relates to a method and apparatus for improving the measurement of the timing of touches of a touch screen. In an embodiment a method of determining a time at which a user touched a touch screen of an electronic device comprises obtaining (101) a touch signal generated by the touch screen for a first time period, the touch signal indicating when the user touched the touch screen during the first time period; obtaining (103) a sensor signal generated by a first sensor for at least the first time period, the sensor signal comprising a first signal component corresponding to a measurement by the first sensor of the user making contact with the touch screen; using (105) the touch signal to identify a time window in the sensor signal containing the first signal component; and processing (107) the windowed sensor signal to determine the timing of the first signal component in the sensor signal.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: February 1, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Erik Gosuinus Petrus Schuijers, Bjorn Nicolaas Servatius Vlaskamp
  • Patent number: 11238836
    Abstract: Methods and systems for depth-based foveated rendering in the display system are disclosed. The display system may be an augmented reality display system configured to provide virtual content on a plurality of depth planes using different wavefront divergence. Some embodiments include determining a fixation point of a user's eyes. Location information associated with a first virtual object to be presented to the user via a display device is obtained. A resolution-modifying parameter of the first virtual object is obtained. A particular resolution at which to render the first virtual object is identified based on the location information and the resolution-modifying parameter of the first virtual object. The particular resolution is based on a resolution distribution specifying resolutions for corresponding distances from the fixation point. The first virtual object rendered at the identified resolution is presented to the user via the display system.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: February 1, 2022
    Assignee: Magic Leap, Inc.
    Inventors: Vaibhav Mathur, Lionel Ernest Edwin, Xiaoyang Zhang, Bjorn Nicolaas Servatius Vlaskamp
  • Publication number: 20210373327
    Abstract: Wearable and optical display systems and methods for operation thereof incorporating monovision display techniques are disclosed. A wearable device may include left and right optical stacks configured to switch between displaying virtual content at a first focal plane or a second focal plane. The wearable device may determine whether or not an activation condition is satisfied. In response to determining that the activation condition is satisfied, a monovision display mode associated with the wearable device may be activated, which may include causing the left optical stack to display the virtual content at the first focal plane and causing the right optical stack to display the virtual content at the second focal plane.
    Type: Application
    Filed: May 25, 2021
    Publication date: December 2, 2021
    Applicant: Magic Leap, Inc.
    Inventors: Bjorn Nicolaas Servatius Vlaskamp, Jason Allen Shultz, William Hudson Welch, Bing Wu