Patents by Inventor Blake Finlayson

Blake Finlayson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240296745
    Abstract: A projected recovery trajectory for an aircraft autopilot system is precomputed by providing a stored set of predefined recovery mode segments, including: a mode 1 segment that models the aircraft coasting; a mode 2 segment that models the aircraft executing a nose high recovery; a mode 3 segment that models the aircraft executing a nose low recovery; a mode 4 segment that models the aircraft executing a throttle only recovery; and a mode 5 segment that models the aircraft executing a terrain avoidance recovery. A processor generates at least one projected recovery trajectory based on a current state of the aircraft, where the processor selectively concatenates selected ones of the predefined recovery mode segments into a sequence and uses that sequence to generate the projected trajectory.
    Type: Application
    Filed: May 9, 2024
    Publication date: September 5, 2024
    Applicant: Gulfstream Aerospace Corporation
    Inventors: Kevin Prosser, Thomas Landers, Abhishek Vaidya, Blake Finlayson, Alborz Sakhaei
  • Patent number: 11990049
    Abstract: A projected recovery trajectory for an aircraft autopilot system is precomputed by providing a stored set of predefined recovery mode segments, including: a mode 1 segment that models the aircraft coasting; a mode 2 segment that models the aircraft executing a nose high recovery; a mode 3 segment that models the aircraft executing a nose low recovery; a mode 4 segment that models the aircraft executing a throttle only recovery; and a mode 5 segment that models the aircraft executing a terrain avoidance recovery. A processor generates at least one projected recovery trajectory based on a current state of the aircraft, where the processor selectively concatenates selected ones of the predefined recovery mode segments into a sequence and uses that sequence to generate the projected trajectory.
    Type: Grant
    Filed: August 27, 2019
    Date of Patent: May 21, 2024
    Assignee: GULFSTREAM AEROSPACE CORPORATION
    Inventors: Kevin Prosser, Thomas Landers, Abhishek Vaidya, Blake Finlayson, Alborz Sakhaei
  • Patent number: 11900824
    Abstract: The aircraft threat envelope protection system employs a threat envelope data structure in a computer-readable medium that stores at least one trigger condition for each of a plurality of different types of threats associated with the aircraft, and modeled using a common schema. A processor computes plural different projected trajectories representing different possible aircraft paths through spacetime. The processor associates at least some of the plurality of the threats to specific trigger points in spacetime along each of the projected trajectories. The processor will deprecate ones of the projected trajectories when they are deemed not viable to recover from a threat. The processor initiates an aircraft protective response when all projected trajectories but one have been deprecated and the aircraft is within a predetermined proximity to the closest trigger point in spacetime along the non-deprecated trajectory.
    Type: Grant
    Filed: April 3, 2023
    Date of Patent: February 13, 2024
    Assignee: GULFSTREAM AEROSPACE CORPORATION
    Inventors: Kevin Prosser, Thomas Landers, Abhishek Vaidya, Alborz Sakhaei, Blake Finlayson
  • Publication number: 20230245576
    Abstract: The aircraft threat envelope protection system employs a threat envelope data structure in a computer-readable medium that stores at least one trigger condition for each of a plurality of different types of threats associated with the aircraft, and modeled using a common schema. A processor computes plural different projected trajectories representing different possible aircraft paths through spacetime. The processor associates at least some of the plurality of the threats to specific trigger points in spacetime along each of the projected trajectories. The processor will deprecate ones of the projected trajectories when they are deemed not viable to recover from a threat. The processor initiates an aircraft protective response when all projected trajectories but one have been deprecated and the aircraft is within a predetermined proximity to the closest trigger point in spacetime along the non-deprecated trajectory.
    Type: Application
    Filed: April 3, 2023
    Publication date: August 3, 2023
    Applicant: Gulfstream Aerospace Corporation
    Inventors: Kevin Prosser, Thomas Landers, Abhishek Vaidya, Alborz Sakhaei, Blake Finlayson
  • Patent number: 11651699
    Abstract: The aircraft threat envelope protection system employs a threat envelope data structure in a computer-readable medium that stores at least one trigger condition for each of a plurality of different types of threats associated with the aircraft, and modeled using a common schema. A processor computes plural different projected trajectories representing different possible aircraft paths through spacetime. The processor associates at least some of the plurality of the threats to specific trigger points in spacetime along each of the projected trajectories. The processor will deprecate ones of the projected trajectories when they are deemed not viable to recover from a threat. The processor initiates an aircraft protective response when all projected trajectories but one have been deprecated and the aircraft is within a predetermined proximity to the closest trigger point in spacetime along the non-deprecated trajectory.
    Type: Grant
    Filed: August 27, 2019
    Date of Patent: May 16, 2023
    Assignee: Gulfstream Aerospace Corporation
    Inventors: Kevin Prosser, Thomas Landers, Abhishek Vaidya, Alborz Sakhaei, Blake Finlayson
  • Patent number: 11592839
    Abstract: The processor supplies flight commands to the flight control system by selectively blending pilot input with control signals from the autopilot. The processor generates a projected recovery trajectory through successive iterations, each beginning at the current aircraft location and using a recovery constraint selectable by the processor to influences a degree of flight aggressiveness. A detection system that identifies and invokes a state of threat existence if a threat exists along the projected recovery trajectory. The processor during threat existence in a first iteration commands an initial soft recovery, with permitted blended pilot input. If the threat exists on subsequent iteration, the processor commands a more aggressive recovery while attenuating blended pilot input.
    Type: Grant
    Filed: August 27, 2019
    Date of Patent: February 28, 2023
    Assignee: Gulfstream Aerospace Corporation
    Inventors: Kevin Prosser, Thomas Landers, Alborz Sakhaei, Abhishek Vaidya, Blake Finlayson
  • Patent number: 11273928
    Abstract: An avionics system for an aircraft includes a threat data structure and a processor. The threat data structure stores an alert threshold and a margin threshold. The processor is programmed to: predict an aircraft state at a plurality of positions along a potential future trajectory; calculate a margin value at each of the plurality of positions as a difference between the predicted future condition and the threat value at each respective one of the plurality of positions; calculate a margin rate of change at each of the plurality of positions based on a change in the margin value along the potential future trajectory; estimate a time to go value based on a minimum calculated margin value and a maximum calculated margin rate of change among the plurality of positions; and command an indicator to alert the pilot in response to the time to go value reaching the alert threshold.
    Type: Grant
    Filed: August 27, 2019
    Date of Patent: March 15, 2022
    Assignee: Gulfstream Aerospace Corporation
    Inventors: Kevin Prosser, Blake Finlayson, Abhishek Vaidya, Alborz Sakhaei
  • Publication number: 20210397183
    Abstract: The processor supplies flight commands to the flight control system by selectively blending pilot input with control signals from the autopilot. The processor generates a projected recovery trajectory through successive iterations, each beginning at the current aircraft location and using a recovery constraint selectable by the processor to influences a degree of flight aggressiveness. A detection system that identifies and invokes a state of threat existence if a threat exists along the projected recovery trajectory. The processor during threat existence in a first iteration commands an initial soft recovery, with permitted blended pilot input. If the threat exists on subsequent iteration, the processor commands a more aggressive recovery while attenuating blended pilot input.
    Type: Application
    Filed: August 27, 2019
    Publication date: December 23, 2021
    Applicant: Gulfstream Aerospace Corporation
    Inventors: Kevin Prosser, Thomas Landers, Alborz Sakhaei, Abhishek Vaidya, Blake Finlayson
  • Publication number: 20200066166
    Abstract: A projected recovery trajectory for an aircraft autopilot system is precomputed by providing a stored set of predefined recovery mode segments, including: a mode 1 segment that models the aircraft coasting; a mode 2 segment that models the aircraft executing a nose high recovery; a mode 3 segment that models the aircraft executing a nose low recovery; a mode 4 segment that models the aircraft executing a throttle only recovery; and a mode 5 segment that models the aircraft executing a terrain avoidance recovery. A processor generates at least one projected recovery trajectory based on a current state of the aircraft, where the processor selectively concatenates selected ones of the predefined recovery mode segments into a sequence and uses that sequence to generate the projected trajectory.
    Type: Application
    Filed: August 27, 2019
    Publication date: February 27, 2020
    Applicant: Gulfstream Aerospace Corporation
    Inventors: Kevin Prosser, Thomas Landers, Abhishek Vaidya, Blake Finlayson, Alborz Sakhaei
  • Publication number: 20200066171
    Abstract: The aircraft threat envelope protection system employs a threat envelope data structure in a computer-readable medium that stores at least one trigger condition for each of a plurality of different types of threats associated with the aircraft, and modeled using a common schema. A processor computes plural different projected trajectories representing different possible aircraft paths through spacetime. The processor associates at least some of the plurality of the threats to specific trigger points in spacetime along each of the projected trajectories. The processor will deprecate ones of the projected trajectories when they are deemed not viable to recover from a threat. The processor initiates an aircraft protective response when all projected trajectories but one have been deprecated and the aircraft is within a predetermined proximity to the closest trigger point in spacetime along the non-deprecated trajectory.
    Type: Application
    Filed: August 27, 2019
    Publication date: February 27, 2020
    Applicant: Gulfstream Aerospace Corporation
    Inventors: Kevin Prosser, Thomas Landers, Abhishek Vaidya, Alborz Sakhaei, Blake Finlayson
  • Publication number: 20200064835
    Abstract: The processor supplies flight commands to the flight control system by selectively blending pilot input with control signals from the autopilot. The processor generates a projected recovery trajectory through successive iterations, each beginning at the current aircraft location and using a recovery constraint selectable by the processor to influences a degree of flight aggressiveness. A detection system that identifies and invokes a state of threat existence if a threat exists along the projected recovery trajectory. The processor during threat existence in a first iteration commands an initial soft recovery, with permitted blended pilot input. If the threat exists on subsequent iteration, the processor commands a more aggressive recovery while attenuating blended pilot input.
    Type: Application
    Filed: August 27, 2019
    Publication date: February 27, 2020
    Applicant: Gulfstream Aerospace Corporation
    Inventors: Kevin Prosser, Thomas Landers, Alborz Sakhaei, Abhishek Vaidya, Blake Finlayson
  • Publication number: 20200062417
    Abstract: An avionics system for an aircraft includes a threat data structure and a processor. The threat data structure stores an alert threshold and a margin threshold. The processor is programmed to: predict an aircraft state at a plurality of positions along a potential future trajectory; calculate a margin value at each of the plurality of positions as a difference between the predicted future condition and the threat value at each respective one of the plurality of positions; calculate a margin rate of change at each of the plurality of positions based on a change in the margin value along the potential future trajectory; estimate a time to go value based on a minimum calculated margin value and a maximum calculated margin rate of change among the plurality of positions; and command an indicator to alert the pilot in response to the time to go value reaching the alert threshold.
    Type: Application
    Filed: August 27, 2019
    Publication date: February 27, 2020
    Applicant: Gulfstream Aerospace Corporation
    Inventors: Kevin Prosser, Blake Finlayson, Abhishek Vaidya, Alborz Sakhaei