Patents by Inventor Bo-Hung Lin

Bo-Hung Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240268236
    Abstract: An integrated chip including a reference magnetic layer and a barrier layer over the reference magnetic layer. A first free magnetic layer is over the barrier layer. A second free magnetic layer is over the first free magnetic layer. A spacer layer is between the first free magnetic layer and the second free magnetic layer. The spacer layer includes magnesium and a transition metal. An atomic ratio of the magnesium to the transition metal ranges from 15% to 80%.
    Type: Application
    Filed: February 6, 2023
    Publication date: August 8, 2024
    Inventors: Kuo-Feng Huang, Bo-Hung Lin, Harry-Haklay Chuang, Kuei-Hung Shen, Ding-Shuo Wang, Yu-Jen Wang
  • Publication number: 20220291306
    Abstract: Disclosed methods include placing a semiconductor wafer containing MRAM devices into a first magnetic field that has a magnitude sufficient to magnetically polarize MRAM bits and has a substantially uniform field strength and direction over the entire area of the wafer. The method further includes placing the wafer in a second magnetic field having an opposite field direction, a substantially uniform field strength and direction over the entire area of the wafer, and magnitude less than a design threshold for MRAM bit magnetization reversal. The method further includes determining a presence of malfunctioning MRAM bits by determining that such malfunctioning MRAM bits have a magnetic polarization that was reversed due to exposure to the second magnetic field. Malfunctioning MRAM bits may further be characterized by electrically reading data bits, or by using a chip probe to read one or more of voltage, current, resistances, etc., of the MRAM devices.
    Type: Application
    Filed: September 9, 2021
    Publication date: September 15, 2022
    Inventors: Cheng-Wei Chien, Harry-Hak-Lay Chuang, Kuei-Hung Shen, Kuo-Feng Huang, Bo-Hung Lin, Chun-Chi Chen
  • Patent number: 9865478
    Abstract: The present disclosure is directed to a physical vapor deposition system configured to heat a semiconductor substrate or wafer. In some embodiments the disclosed physical vapor deposition system comprises at least one heat source having one or more lamp modules for heating of the substrate. The lamp modules may be separated from the substrate by a shielding device. In some embodiments, the shielding device comprises a one-piece device or a two piece device. The disclosed physical vapor deposition system can heat the semiconductor substrate, reflowing a metal film deposited thereon without the necessity for separate chambers, thereby decreasing process time, requiring less thermal budget, and decreasing substrate damage.
    Type: Grant
    Filed: January 5, 2015
    Date of Patent: January 9, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ming-Chin Tsai, Bo-Hung Lin, You-Hua Chou, Chung-En Kao
  • Patent number: 9574265
    Abstract: In some embodiments, the present disclosure relates to a plasma processing system having a magnetron that provides a symmetric magnetic track through a combination of vibrational and rotational motion. The disclosed magnetron has a magnetic element that generates a magnetic field. The magnetic element is attached to an elastic element connected between the magnetic element and a rotational shaft that rotates the magnetic element about a center of the sputtering target. The elastic element may vary its length during rotation of the magnetic element to change the radial distance between the rotational shaft and the magnetic element. The resulting magnetic track enables concurrent motion of the magnetic element in both an angular direction and a radial direction. Such motion enables a symmetric magnetic track that provides good wafer uniformity and a short deposition time.
    Type: Grant
    Filed: July 6, 2015
    Date of Patent: February 21, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Bo-Hung Lin, Ming-Chih Tsai, You-Hua Chou, Chung-En Kao
  • Patent number: 9543125
    Abstract: Plasma-enhanced chemical vapor deposition (PECVD) devices enable the generation of a plasma in a plasma zone of a deposition chamber, which reacts with a surface of a substrate to form a deposited film in the fabrication of a semiconductor component. The plasma generator is often positioned over the center of the substrate, and the generated plasma often remains in the vicinity of the plasma generator, resulting in a thicker deposition near the center than at the edges of the substrate. Tighter process control is achievable by positioning one or more electromagnets in a periphery of the plasma zone and supplying power to generate a magnetic field, thereby inducing the charged plasma to achieve a more consistent distribution within the plasma zone and more uniform deposition on the substrate. Variations in the number, configuration, and powering of the electromagnets enable various redistributive effects on the plasma within the plasma zone.
    Type: Grant
    Filed: April 3, 2013
    Date of Patent: January 10, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Hsiang-Wei Lin, Chia-Ho Chen, Bo-Hung Lin
  • Patent number: 9279179
    Abstract: In some embodiments, the present disclosure relates to a plasma processing system configured to form a symmetric plasma distribution around a workpiece. In some embodiments, the plasma processing system comprises a plurality of coils symmetrically positioned around a processing chamber. When a current is provided to the coils, separate magnetic fields, which operate to ionize the target atoms, emanate from the separate coils. The separate magnetic fields operate upon ions within the coils to form a plasma on the interior of the coils. Furthermore, the separate magnetic fields are superimposed upon one another between coils to form a plasma on the exterior of the coils. Therefore, the disclosed plasma processing system can form a plasma that continuously extends along a perimeter of the workpiece with a high degree of uniformity (i.e., without dead spaces).
    Type: Grant
    Filed: February 6, 2012
    Date of Patent: March 8, 2016
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ming-Chin Tsai, Bo-Hung Lin, Chung-En Kao, Chin-Hsiang Lin
  • Publication number: 20150307985
    Abstract: In some embodiments, the present disclosure relates to a plasma processing system having a magnetron that provides a symmetric magnetic track through a combination of vibrational and rotational motion. The disclosed magnetron has a magnetic element that generates a magnetic field. The magnetic element is attached to an elastic element connected between the magnetic element and a rotational shaft that rotates the magnetic element about a center of the sputtering target. The elastic element may vary its length during rotation of the magnetic element to change the radial distance between the rotational shaft and the magnetic element. The resulting magnetic track enables concurrent motion of the magnetic element in both an angular direction and a radial direction. Such motion enables a symmetric magnetic track that provides good wafer uniformity and a short deposition time.
    Type: Application
    Filed: July 6, 2015
    Publication date: October 29, 2015
    Inventors: Bo-Hung Lin, Ming-Chih Tsai, You-Hua Chou, Chung-En Kao
  • Patent number: 9093252
    Abstract: In some embodiments, the present disclosure relates to a plasma processing system comprising a magnetron configured to provide a symmetric magnetic track through a combination of vibrational and rotational motion. The disclosed magnetron comprises a magnetic element configured to generate a magnetic field. The magnetic element is attached to an elastic element connected between the magnetic element and a rotational shaft configured to rotate magnetic element about a center of the sputtering target. The elastic element is configured to vary its length during rotation of the magnetic element to change the radial distance between the rotational shaft and the magnetic element. The resulting magnetic track enables concurrent motion of the magnetic element in both an angular direction and a radial direction. Such motion enables a symmetric magnetic track that provides good wafer uniformity and a short deposition time.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: July 28, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Bo-Hung Lin, Ming-Chih Tsai, You-Hua Chou, Chung-En Kao
  • Patent number: 9026241
    Abstract: The present disclosure relates to semiconductor tool monitoring system having multiple sensors configured to concurrently and independently monitor processing conditions of a semiconductor manufacturing tool. In some embodiments, the disclosed tool monitoring system comprises a first sensor system configured to monitor one or more processing conditions of a semiconductor manufacturing tool and to generate a first monitoring response based thereupon. A redundant, second sensor system is configured to concurrently monitor the one or more processing conditions of the manufacturing tool and to generate a second monitoring response based thereupon. A comparison element is configured to compare the first and second monitoring responses, and if the responses deviate from one another (e.g., have a deviation greater than a threshold value) to generate a warning signal. By comparing the first and second monitoring responses, errors in the sensor systems can be detected in real time, thereby preventing yield loss.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: May 5, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wen-Cheng Yang, Chung-En Kao, You-Hua Chou, Ming-Chih Tsai, Chen-Chia Chiang, Bo-Hung Lin, Chin-Hsiang Lin
  • Publication number: 20150118843
    Abstract: The present disclosure is directed to a physical vapor deposition system configured to heat a semiconductor substrate or wafer. In some embodiments the disclosed physical vapor deposition system comprises at least one heat source having one or more lamp modules for heating of the substrate. The lamp modules may be separated from the substrate by a shielding device. In some embodiments, the shielding device comprises a one-piece device or a two piece device. The disclosed physical vapor deposition system can heat the semiconductor substrate, reflowing a metal film deposited thereon without the necessity for separate chambers, thereby decreasing process time, requiring less thermal budget, and decreasing substrate damage.
    Type: Application
    Filed: January 5, 2015
    Publication date: April 30, 2015
    Inventors: Ming-Chin Tsai, Bo-Hung Lin, You-Hua Chou, Chung-En Kao
  • Patent number: 8926806
    Abstract: The present disclosure is directed to a physical vapor deposition system configured to heat a semiconductor substrate or wafer. In some embodiments the disclosed physical vapor deposition system comprises at least one heat source having one or more lamp modules for heating of the substrate. The lamp modules may be separated from the substrate by a shielding device. In some embodiments, the shielding device comprises a one-piece device or a two piece device. The disclosed physical vapor deposition system can heat the semiconductor substrate, reflowing a metal film deposited thereon without the necessity for separate chambers, thereby decreasing process time, requiring less thermal budget, and decreasing substrate damage.
    Type: Grant
    Filed: January 23, 2012
    Date of Patent: January 6, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ming-Chin Tsai, Bo-Hung Lin, You-Hua Chou, Chung-En Kao
  • Patent number: 8884526
    Abstract: In some embodiments, the present disclosure relates to a plasma processing system that generates a magnetic field having a maximum strength that is independent of workpiece size. The plasma processing system has a plurality of side electromagnets that have a size which is independent of the workpiece size. The side electromagnets are located around a perimeter of a processing chamber configured to house a semiconductor workpiece. When a current is provided to the side electromagnets, separate magnetic fields emanate from separate positions around the workpiece. The separate magnetic fields contribute to the formation of an overall magnetic field that controls the distribution of plasma within the processing chamber. Because the size of the plurality of separate side magnets is independent of the workpiece size, the plurality of side magnets can generate a magnetic field having a maximum field strength that is independent of workpiece size.
    Type: Grant
    Filed: January 20, 2012
    Date of Patent: November 11, 2014
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Bo-Hung Lin, Ming-Chih Tsai, Chia-Ho Chen, Chung-En Kao
  • Publication number: 20140272193
    Abstract: Plasma-enhanced chemical vapor deposition (PECVD) devices enable the generation of a plasma in a plasma zone of a deposition chamber, which reacts with a surface of a substrate to form a deposited film in the fabrication of a semiconductor component. The plasma generator is often positioned over the center of the substrate, and the generated plasma often remains in the vicinity of the plasma generator, resulting in a thicker deposition near the center than at the edges of the substrate. Tighter process control is achievable by positioning one or more electromagnets in a periphery of the plasma zone and supplying power to generate a magnetic field, thereby inducing the charged plasma to achieve a more consistent distribution within the plasma zone and more uniform deposition on the substrate. Variations in the number, configuration, and powering of the electromagnets enable various redistributive effects on the plasma within the plasma zone.
    Type: Application
    Filed: April 3, 2013
    Publication date: September 18, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Hsiang-Wei Lin, Chia-Ho Chen, Bo-Hung Lin
  • Publication number: 20130226327
    Abstract: The present disclosure relates to semiconductor tool monitoring system having multiple sensors configured to concurrently and independently monitor processing conditions of a semiconductor manufacturing tool. In some embodiments, the disclosed tool monitoring system comprises a first sensor system configured to monitor one or more processing conditions of a semiconductor manufacturing tool and to generate a first monitoring response based thereupon. A redundant, second sensor system is configured to concurrently monitor the one or more processing conditions of the manufacturing tool and to generate a second monitoring response based thereupon. A comparison element is configured to compare the first and second monitoring responses, and if the responses deviate from one another (e.g., have a deviation greater than a threshold value) to generate a warning signal. By comparing the first and second monitoring responses, errors in the sensor systems can be detected in real time, thereby preventing yield loss.
    Type: Application
    Filed: February 24, 2012
    Publication date: August 29, 2013
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wen-Cheng Yang, Chung-En Kao, You-Hua Chou, Ming-Chih Tsai, Chen-Chia Chiang, Bo-Hung Lin, Chin-Hsiang Lin
  • Publication number: 20130213797
    Abstract: In some embodiments, the present disclosure relates to a plasma processing system comprising a magnetron configured to provide a symmetric magnetic track through a combination of vibrational and rotational motion. The disclosed magnetron comprises a magnetic element configured to generate a magnetic field. The magnetic element is attached to an elastic element connected between the magnetic element and a rotational shaft configured to rotate magnetic element about a center of the sputtering target. The elastic element is configured to vary its length during rotation of the magnetic element to change the radial distance between the rotational shaft and the magnetic element. The resulting magnetic track enables concurrent motion of the magnetic element in both an angular direction and a radial direction. Such motion enables a symmetric magnetic track that provides good wafer uniformity and a short deposition time.
    Type: Application
    Filed: February 16, 2012
    Publication date: August 22, 2013
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Bo-Hung Lin, Ming-Chih Tsai, You-Hua Chou, Chung-En Kao
  • Publication number: 20130199926
    Abstract: In some embodiments, the present disclosure relates to a plasma processing system configured to form a symmetric plasma distribution around a workpiece. In some embodiments, the plasma processing system comprises a plurality of coils symmetrically positioned around a processing chamber. When a current is provided to the coils, separate magnetic fields, which operate to ionize the target atoms, emanate from the separate coils. The separate magnetic fields operate upon ions within the coils to form a plasma on the interior of the coils. Furthermore, the separate magnetic fields are superimposed upon one another between coils to form a plasma on the exterior of the coils. Therefore, the disclosed plasma processing system can form a plasma that continuously extends along a perimeter of the workpiece with a high degree of uniformity (i.e., without dead spaces).
    Type: Application
    Filed: February 6, 2012
    Publication date: August 8, 2013
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ming-Chih Tsai, Bo-Hung Lin, Chung-En Kao, Chin-Hsiang Lin
  • Publication number: 20130186338
    Abstract: The present disclosure is directed to a physical vapor deposition system configured to heat a semiconductor substrate or wafer. In some embodiments the disclosed physical vapor deposition system comprises at least one heat source having one or more lamp modules for heating of the substrate. The lamp modules may be separated from the substrate by a shielding device. In some embodiments, the shielding device comprises a one-piece device or a two piece device. The disclosed physical vapor deposition system can heat the semiconductor substrate, reflowing a metal film deposited thereon without the necessity for separate chambers, thereby decreasing process time, requiring less thermal budget, and decreasing substrate damage.
    Type: Application
    Filed: January 23, 2012
    Publication date: July 25, 2013
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ming-Chin Tsai, Bo-Hung Lin, You-Hua Chou, Chung-En Kao
  • Publication number: 20130187546
    Abstract: In some embodiments, the present disclosure relates to a plasma processing system that generates a magnetic field having a maximum strength that is independent of workpiece size. The plasma processing system has a plurality of side electromagnets that have a size which is independent of the workpiece size. The side electromagnets are located around a perimeter of a processing chamber configured to house a semiconductor workpiece. When a current is provided to the side electromagnets, separate magnetic fields emanate from separate positions around the workpiece. The separate magnetic fields contribute to the formation of an overall magnetic field that controls the distribution of plasma within the processing chamber. Because the size of the plurality of separate side magnets is independent of the workpiece size, the plurality of side magnets can generate a magnetic field having a maximum field strength that is independent of workpiece size.
    Type: Application
    Filed: January 20, 2012
    Publication date: July 25, 2013
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Bo-Hung Lin, Ming-Chih Tsai, Chia-Ho Chen, Chung-En Kao
  • Patent number: 8228007
    Abstract: The invention discloses a microwave supplying apparatus including a microwave generator, a first power divider, a second power divider, a first waveguide, and a second wave guide. The first waveguide is connected to the microwave generator and has a first output terminal and a second output terminal to divide a microwave generated by the microwave generator along a first direction. The second power divider is connected to the first output terminal and has a third output terminal and a fourth output terminal to divide the microwave along a second direction. The first waveguide and the second waveguide are connected to the third output terminal and the fourth terminal respectively and receive the microwave through the first power divider and the second power divider to respectively output the microwave fields with approximate intensity distributions.
    Type: Grant
    Filed: December 24, 2009
    Date of Patent: July 24, 2012
    Assignees: Chung-Shan Institute of Science and Technology, Armaments Bureau, Ministry of National Defense
    Inventors: Chung-Chun Huang, Tsun-Hsu Chang, Bo-Hung Lin, Chi-Wen Hu
  • Publication number: 20110156838
    Abstract: The invention discloses a microwave supplying apparatus including a microwave generator, a first power divider, a second power divider, a first waveguide, and a second wave guide. The first waveguide is connected to the microwave generator and has a first output terminal and a second output terminal to divide a microwave generated by the microwave generator along a first direction. The second power divider is connected to the first output terminal and has a third output terminal and a fourth output terminal to divide the microwave along a second direction. The first waveguide and the second waveguide are connected to the third output terminal and the fourth terminal respectively and receive the microwave through the first power divider and the second power divider to respectively output the microwave fields with approximate intensity distributions.
    Type: Application
    Filed: December 24, 2009
    Publication date: June 30, 2011
    Inventors: CHUNG-CHUN HUANG, Tsun-Hsu Chang, Bo-Hung Lin, Chi-Wen Hu