Patents by Inventor BO-JHIH SHEN

BO-JHIH SHEN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240021230
    Abstract: A semiconductor device and a method of forming the same are provided. The method includes forming a bottom electrode layer over a substrate. A magnetic tunnel junction (MTJ) layers are formed over the bottom electrode layer. A top electrode layer is formed over the MTJ layers. The top electrode layer is patterned. After patterning the top electrode layer, one or more process cycles are performed on the MTJ layers and the bottom electrode layer. A patterned top electrode layer, patterned MTJ layers and a patterned bottom electrode layer form MTJ structures. Each of the one or more process cycles includes performing an etching process on the MTJ layers and the bottom electrode layer for a first duration and performing a magnetic treatment on the MTJ layers and the bottom electrode layer for a second duration.
    Type: Application
    Filed: August 8, 2023
    Publication date: January 18, 2024
    Inventors: Bo-Jhih Shen, Kuang-I Liu, Joung-Wei Liou, Jinn-Kwei Liang, Yi-Wei Chiu, Chin-Hsing Lin, Li-Te Hsu, Han-Ting Tsai, Cheng-Yi Wu, Shih-Ho Lin
  • Publication number: 20230369106
    Abstract: The present disclosure describes a method for forming a silicon-based, carbon-rich, low-k ILD layer with a carbon concentration between about 15 atomic % and about 20 atomic %. For example, the method includes depositing a dielectric layer, over a substrate, with a dielectric material having a dielectric constant below 3.9 and a carbon atomic concentration between about 15% and about 20%; exposing the dielectric layer to a thermal process configured to outgas the dielectric material; etching the dielectric layer to form openings; and filling the openings with a conductive material to form conductive structures.
    Type: Application
    Filed: July 12, 2023
    Publication date: November 16, 2023
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Joung-Wei Liou, Yi-Wei Chiu, Bo-Jhih Shen
  • Patent number: 11749563
    Abstract: The present disclosure describes a method for forming a silicon-based, carbon-rich, low-k ILD layer with a carbon concentration between about 15 atomic % and about 20 atomic %. For example, the method includes depositing a dielectric layer, over a substrate, with a dielectric material having a dielectric constant below 3.9 and a carbon atomic concentration between about 15% and about 20%; exposing the dielectric layer to a thermal process configured to outgas the dielectric material; etching the dielectric layer to form openings; and filling the openings with a conductive material to form conductive structures.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: September 5, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Joung-Wei Liou, Yi-Wei Chiu, Bo-Jhih Shen
  • Publication number: 20220254682
    Abstract: Implementations of the present disclosure provide methods for preventing contact damage or oxidation after via/trench opening formation. In one example, the method includes forming an opening in a structure on the substrate to expose a portion of a surface of an electrically conductive feature, and bombarding a surface of a mask layer of the structure using energy species formed from a plasma to release reactive species from the mask layer, wherein the released reactive species form a barrier layer on the exposed surface of the electrically conductive feature.
    Type: Application
    Filed: April 27, 2022
    Publication date: August 11, 2022
    Inventors: Bo-Jhih Shen, Yi-Wei Chiu, Hung Jui Chang
  • Patent number: 11335593
    Abstract: Implementations of the present disclosure provide methods for preventing contact damage or oxidation after via/trench opening formation. In one example, the method includes forming an opening in a structure on the substrate to expose a portion of a surface of an electrically conductive feature, and bombarding a surface of a mask layer of the structure using energy species formed from a plasma to release reactive species from the mask layer, wherein the released reactive species form a barrier layer on the exposed surface of the electrically conductive feature.
    Type: Grant
    Filed: February 11, 2020
    Date of Patent: May 17, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Bo-Jhih Shen, Yi-Wei Chiu, Hung Jui Chang
  • Publication number: 20210312965
    Abstract: A semiconductor device and a method of forming the same are provided. The method includes forming a bottom electrode layer over a substrate. A magnetic tunnel junction (MTJ) layers are formed over the bottom electrode layer. A top electrode layer is formed over the MTJ layers. The top electrode layer is patterned. After patterning the top electrode layer, one or more process cycles are performed on the MTJ layers and the bottom electrode layer. A patterned top electrode layer, patterned MTJ layers and a patterned bottom electrode layer form MTJ structures. Each of the one or more process cycles includes performing an etching process on the MTJ layers and the bottom electrode layer for a first duration and performing a magnetic treatment on the MTJ layers and the bottom electrode layer for a second duration.
    Type: Application
    Filed: June 21, 2021
    Publication date: October 7, 2021
    Inventors: Bo-Jhih Shen, Kuang-I Liu, Joung-Wei Liou, Jinn-Kwei Liang, Yi-Wei Chiu, Chin-Hsing Lin, Li-Te Hsu, Han-Ting Tsai, Cheng-Yi Wu, Shih-Ho Lin
  • Patent number: 11043251
    Abstract: A semiconductor device and a method of forming the same are provided. The method includes forming a bottom electrode layer over a substrate. A magnetic tunnel junction (MTJ) layers are formed over the bottom electrode layer. A top electrode layer is formed over the MTJ layers. The top electrode layer is patterned. After patterning the top electrode layer, one or more process cycles are performed on the MTJ layers and the bottom electrode layer. A patterned top electrode layer, patterned MTJ layers and a patterned bottom electrode layer form MTJ structures. Each of the one or more process cycles includes performing an etching process on the MTJ layers and the bottom electrode layer for a first duration and performing a magnetic treatment on the MTJ layers and the bottom electrode layer for a second duration.
    Type: Grant
    Filed: September 10, 2019
    Date of Patent: June 22, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Bo-Jhih Shen, Kuang-I Liu, Joung-Wei Liou, Jinn-Kwei Liang, Yi-Wei Chiu, Chin-Hsing Lin, Li-Te Hsu, Han-Ting Tsai, Cheng-Yi Wu, Shih-Ho Lin
  • Publication number: 20200176308
    Abstract: Implementations of the present disclosure provide methods for preventing contact damage or oxidation after via/trench opening formation. In one example, the method includes forming an opening in a structure on the substrate to expose a portion of a surface of an electrically conductive feature, and bombarding a surface of a mask layer of the structure using energy species formed from a plasma to release reactive species from the mask layer, wherein the released reactive species form a barrier layer on the exposed surface of the electrically conductive feature.
    Type: Application
    Filed: February 11, 2020
    Publication date: June 4, 2020
    Inventors: Bo-Jhih Shen, Yi-Wei Chiu, Hung Jui Chang
  • Publication number: 20200176041
    Abstract: A semiconductor device and a method of forming the same are provided. The method includes forming a bottom electrode layer over a substrate. A magnetic tunnel junction (MTJ) layers are formed over the bottom electrode layer. A top electrode layer is formed over the MTJ layers. The top electrode layer is patterned. After patterning the top electrode layer, one or more process cycles are performed on the MTJ layers and the bottom electrode layer. A patterned top electrode layer, patterned MTJ layers and a patterned bottom electrode layer form MTJ structures. Each of the one or more process cycles includes performing an etching process on the MTJ layers and the bottom electrode layer for a first duration and performing a magnetic treatment on the MTJ layers and the bottom electrode layer for a second duration.
    Type: Application
    Filed: September 10, 2019
    Publication date: June 4, 2020
    Inventors: Bo-Jhih Shen, Kuang-I Liu, Joung-Wei Liou, Jinn-Kwei Liang, Yi-Wei Chiu, Chin-Hsing Lin, Li-Te Hsu, Han-Ting Tsai, Cheng-Yi Wu, Shih-Ho Lin
  • Patent number: 10566232
    Abstract: Implementations of the present disclosure provide methods for preventing contact damage or oxidation after via/trench opening formation. In one example, the method includes forming an opening in a structure on the substrate to expose a portion of a surface of an electrically conductive feature, and bombarding a surface of a mask layer of the structure using energy species formed from a plasma to release reactive species from the mask layer, wherein the released reactive species form a barrier layer on the exposed surface of the electrically conductive feature.
    Type: Grant
    Filed: July 18, 2017
    Date of Patent: February 18, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Bo-Jhih Shen, Yi-Wei Chiu, Hung Jui Chang
  • Publication number: 20200006126
    Abstract: The present disclosure describes a method for forming a silicon-based, carbon-rich, low-k ILD layer with a carbon concentration between about 15 atomic % and about 20 atomic %. For example, the method includes depositing a dielectric layer, over a substrate, with a dielectric material having a dielectric constant below 3.9 and a carbon atomic concentration between about 15% and about 20%; exposing the dielectric layer to a thermal process configured to outgas the dielectric material; etching the dielectric layer to form openings; and filling the openings with a conductive material to form conductive structures.
    Type: Application
    Filed: September 21, 2018
    Publication date: January 2, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Joung-Wei Liou, Yi-Wei Chiu, Bo-Jhih Shen
  • Publication number: 20180337090
    Abstract: Implementations of the present disclosure provide methods for preventing contact damage or oxidation after via/trench opening formation. In one example, the method includes forming an opening in a structure on the substrate to expose a portion of a surface of an electrically conductive feature, and bombarding a surface of a mask layer of the structure using energy species formed from a plasma to release reactive species from the mask layer, wherein the released reactive species form a barrier layer on the exposed surface of the electrically conductive feature.
    Type: Application
    Filed: July 18, 2017
    Publication date: November 22, 2018
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: BO-JHIH SHEN, YI-WEI CHIU, HUNG JUI CHANG