Patents by Inventor Bo-Kyung Ryu

Bo-Kyung Ryu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140295285
    Abstract: The present invention refers to a method of preparing a separator, comprising: producing a dispersion comprising inorganic particles, a polymer binder, polymer fibers and a solvent; applying the dispersion on the top surface of a substrate to form a non-woven fabric web as a layer comprising the inorganic particles, the polymer binder and the polymer fiber, in which the inorganic particles are positioned in gaps of the polymer fibers and adhered thereto by the polymer binder; and drying and compressing the non-woven fabric web to obtain a non-woven fabric substrate; a separator prepared by the method; and an electrochemical device comprising the separator.
    Type: Application
    Filed: June 12, 2014
    Publication date: October 2, 2014
    Inventors: Joo-Sung Lee, Bo-Kyung Ryu, Jong-Hun Kim
  • Publication number: 20140287327
    Abstract: The present invention provides a method of coating a substrate for a lithium secondary battery with inorganic particles, comprising charging the inorganic particles to form charged inorganic particles; transferring the charged inorganic particles on the substrate for a lithium secondary battery to form a coating layer; and fixing the coating layer with heat and pressure. Such a coating method according to one embodiment of the present invention uses electrostatic force without the addition of a solvent, and therefore, non use of a solvent can result in cost-reducing effects since there is no burden on the handling and storing of the solvent, and since a drying procedure after slurry coating is not needed, it allows for the preparation of a lithium secondary battery in a highly effective and rapid manner.
    Type: Application
    Filed: June 9, 2014
    Publication date: September 25, 2014
    Inventors: Joo-Sung Lee, Jong-Hun Kim, Jeong-Min Ha, Bo-Kyung Ryu, Jin-Woo Kim
  • Publication number: 20140272525
    Abstract: The present disclosure relates to a non-woven fabric made from a fiber coated with a binder polymer by spinning a non-woven forming fiber in an organic binder polymer compound solution, an electrochemical cell using the non-woven fabric as a separator substrate, and a method of making the non-woven fabric, and the non-woven fabric has a pore diameter in a range of 0.001 to 10 ?m, thereby providing a mechanical property required for a separator while ensuring a favorable movement of a lithium ion, and in the use of the non-woven fabric as a separator of an electrochemical cell, eliminating a need for a process of applying a separate adhesive layer, resulting in an effect of simplifying a separator manufacturing process.
    Type: Application
    Filed: May 28, 2014
    Publication date: September 18, 2014
    Applicant: LG CHEM, LTD.
    Inventors: Bo-Kyung Ryu, Jin-Woo Kim, Ji-Eun Lee, So-Mi Jeong, Jong-Hun Kim
  • Patent number: 8815433
    Abstract: Disclosed is a method for manufacturing a separator. The method includes (S1) preparing a porous planar substrate having a plurality of pores, (S2) preparing a slurry containing inorganic particles dispersed therein and a polymer solution including a first binder polymer and a second binder polymer in a solvent, and coating the slurry on at least one surface of the porous substrate, (S3) spraying a non-solvent incapable of dissolving the second binder polymer on the slurry, and (S4) simultaneously removing the solvent and the non-solvent by drying. According to the method, a separator with good bindability to electrodes can be manufactured in an easy manner. In addition, problems associated with the separation of inorganic particles in the course of manufacturing an electrochemical device can be avoided.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: August 26, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Joo-Sung Lee, Jang-Hyuk Hong, Jong-Hun Kim, Bo-Kyung Ryu
  • Publication number: 20140227593
    Abstract: The present disclosure relates to an invention directed to controlling a viscosity of a slurry used to manufacture an electrochemical device, by adjusting a particle diameter of an inorganic matter that is an ingredient of the slurry, so that a sinking rate of the inorganic particles may remarkably slow down and dispersibility may be dramatically improved, and as a result, the content of the inorganic particles may relatively increase and the inorganic particles may be uniformly distributed in a coating layer on a substrate, thereby preventing a reduction in battery performance.
    Type: Application
    Filed: April 22, 2014
    Publication date: August 14, 2014
    Applicant: LG CHEM, LTD.
    Inventors: Joo-Sung Lee, Su-Jin Yoon, Da-Kyung Han, Bo-Kyung Ryu, Jong-Hun Kim
  • Publication number: 20140220411
    Abstract: Disclosed is a method for manufacturing a separator. The method includes (S1) preparing a porous planar substrate having a plurality of pores, (S2) preparing a slurry containing inorganic particles dispersed therein and a polymer solution including a first binder polymer and a second binder polymer in a solvent, and coating the slurry on at least one surface of the porous substrate, (S3) spraying a non-solvent incapable of dissolving the second binder polymer on the slurry, and (S4) simultaneously removing the solvent and the non-solvent by drying. According to the method, a separator with good bindability to electrodes can be manufactured in an easy manner. In addition, problems associated with the separation of inorganic particles in the course of manufacturing an electrochemical device can be avoided.
    Type: Application
    Filed: April 4, 2014
    Publication date: August 7, 2014
    Applicant: LG CHEM, LTD.
    Inventors: Joo Sung Lee, Jang-Hyuk Hong, Jong-Hun Kim, Bo-Kyung Ryu
  • Patent number: 8778524
    Abstract: Disclosed is an electrochemical device. The electrochemical device includes: (a) a composite separator including a porous substrate, a first porous coating layer coated on one surface of the porous substrate, and a second porous coating layer coated on the other surface of the porous substrate; (b) an anode disposed to face the first porous coating layer; and (c) a cathode disposed to face the second porous coating layer. The first and second porous coating layers are each independently composed of a mixture including inorganic particles and a binder polymer. The first porous coating layer is thicker than the second porous coating layer. The electrochemical device has good thermal stability and improved cycle characteristics.
    Type: Grant
    Filed: June 15, 2012
    Date of Patent: July 15, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Joo-Sung Lee, Jang-Hyuk Hong, Jong-Hun Kim, Bo-Kyung Ryu
  • Publication number: 20140186681
    Abstract: Disclosed is an electrochemical device. The electrochemical device includes: (a) a composite separator including a porous substrate, a first porous coating layer coated on one surface of the porous substrate, and a second porous coating layer coated on the other surface of the porous substrate; (b) an anode disposed to face the first porous coating layer; and (c) a cathode disposed to face the second porous coating layer. The first and second porous coating layers are each independently composed of a mixture including inorganic particles and a binder polymer. The first porous coating layer is thicker than the second porous coating layer. The electrochemical device has good thermal stability and improved cycle characteristics.
    Type: Application
    Filed: March 10, 2014
    Publication date: July 3, 2014
    Applicant: LG CHEM, LTD.
    Inventors: Joo-Sung Lee, Jang-Hyuk Hong, Jong-Hun Kim, Bo-Kyung Ryu
  • Publication number: 20140178740
    Abstract: The present invention refers to a method of preparing a separator, a separator prepared therefrom and an electrochemical device having the separator. The method of preparing a separator according to the present invention comprises providing a planar and porous substrate having multiple pores; and coating a first slurry on at least one surface of the porous substrate through a slot section to form a porous coating layer, while continuously coating a second slurry on the porous coating layer through a slide section adjacent to the slot section to form a layer for adhesion with an electrode, the first slurry comprising inorganic particles, a first binder polymer and a first solvent, and the second slurry comprising a second binder polymer and a second solvent.
    Type: Application
    Filed: February 27, 2014
    Publication date: June 26, 2014
    Applicant: LG CHEM, LTD.
    Inventors: Bo-Kyung Ryu, Joo-Sung Lee, Jong-Hun Kim
  • Publication number: 20140023921
    Abstract: The present invention provides an electrode comprising a current collector; an electrode active material layer formed on at least one surface of the current collector and comprising a mixture of electrode active material particles and a first binder polymer; and a porous coating layer formed on the surface of the electrode active material layer, comprising a mixture of inorganic particles and a second binder polymer and having a thickness deviation defined by the following Formula (1), and a manufacturing method thereof: (Tmax?Tmin)/Tavg?0.35??(1) wherein Tmax is a maximum thickness of the porous coating layer formed on the surface of the electrode active material layer, Tmin is a minimum thickness of the porous coating layer and Tavg is an average thickness of the porous coating layer.
    Type: Application
    Filed: August 13, 2013
    Publication date: January 23, 2014
    Applicant: LG Chem, Ltd.
    Inventors: Joo-Sung Lee, Jong-Hun Kim, Jeong-Min Ha, Sun-Mi Jin, Bo-Kyung Ryu, Jin-Woo Kim
  • Publication number: 20130316219
    Abstract: The present invention provides a method for manufacturing a separator, comprising the steps of (S1) preparing a porous planar substrate having multiple pores; (S2) coating a coating solution obtained by dissolving a binder polymer in a solvent and dispersing inoganic particles therein on the porous substrate to form a porous coating layer and drying the porous coating layer; and (S3) applying a binder solution on the surface of the dried porous coating layer to form an adhesive layer, wherein the binder solution has a surface energy of at least 10 mN/m higher than that of the porous coating layer and a contact angle of the binder solution to the surface of the porous coating layer maintained at 80° or more for 30 seconds. In accordance with the present invention, a separator capable of obtaining sufficient adhesion force with minimizing the amount of an adhesive used for the adhesion with an electrode, and minimizing the deterioration of battery performances can be easily manufactured.
    Type: Application
    Filed: July 23, 2013
    Publication date: November 28, 2013
    Applicant: LG CHEM, LTD.
    Inventors: Jeong-Min Ha, Joo-Sung Lee, Jin-Woo Kim, Jong-Hun Kim, Sun-Mi Jin, Bo-Kyung Ryu
  • Publication number: 20130280583
    Abstract: The present invention refers to a separator for an electrochemical device and an electrochemical device having the same. More specifically, the separator of the present invention comprises a porous substrate; a first porous coating layer formed on one surface of the porous substrate and comprising a mixture of inorganic particles and a first binder polymer; and a second porous coating layer formed on the other surface of the porous substrate and comprising a product obtained by drying a mixture of a solvent, a non-solvent and a second binder polymer. Such separator of the present invention can have good thermal safety due to a porous organic-inorganic coating layer formed on one surface thereof, and superior adhesiveness due to a porous coating layer made of a binder thin film formed by applying and drying a mixture of a binder polymer and a non-solvent on the other surface thereof.
    Type: Application
    Filed: June 18, 2013
    Publication date: October 24, 2013
    Inventors: Joo-Sung Lee, Sun-Mi Jin, Jong-Hun Kim, Jeong-Min Ha, Bo-Kyung Ryu, Jin-Woo Kim
  • Publication number: 20130011715
    Abstract: Disclosed is an electrode assembly having a structure in which a plurality of unit cells are bonded to one or both surfaces of a first separator whose length is greater than width and are stacked in a zigzag pattern or wound sequentially. The first separator includes a first porous electrode adhesive layer, to which electrodes of the unit cells are adhered, formed at one surface thereof to which the unit cells are bonded. The first porous electrode adhesive layer includes a mixture of inorganic particles and a binder polymer. Each of the unit cells includes a second separator including second porous electrode adhesive layers, to which electrodes of the unit cell are adhered, formed at both surfaces thereof. Each of the second porous electrode adhesive layers includes a mixture of inorganic particles and a binder polymer. Further disclosed is an electrochemical device including the electrode assembly.
    Type: Application
    Filed: August 30, 2012
    Publication date: January 10, 2013
    Inventors: Joo-Sung LEE, In-Chul Kim, Bo-Kyung Ryu, Jong-Hun Kim
  • Publication number: 20130004817
    Abstract: A jelly-roll type electrode assembly is disclosed. The jelly-roll type electrode assembly includes an anode, a cathode, and separators interposed between the anode and the cathode and having a greater length than width. Each of the separators is longer than the anode and the cathode. Each of the separators has a porous substrate and porous coating layers formed on both surfaces of the porous substrate. The porous coating layers include a mixture of inorganic particles and a binder polymer. The porous coating layers are formed only in areas where the separators are in contact with the anode and the cathode. The porous coating layers enhance the heat resistance of the separators. Due to the enhanced heat resistance, the separators can prevent the performance of a battery from deteriorating. In addition, the porous coating layers can be prevented from being separated from the separators during battery assembly processing.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 3, 2013
    Inventors: Joo-Sung LEE, Jong-Hun KIM, Bo-Kyung RYU
  • Publication number: 20120251869
    Abstract: Disclosed is an electrochemical device. The electrochemical device includes: (a) a composite separator including a porous substrate, a first porous coating layer coated on one surface of the porous substrate, and a second porous coating layer coated on the other surface of the porous substrate; (b) an anode disposed to face the first porous coating layer; and (c) a cathode disposed to face the second porous coating layer. The first and second porous coating layers are each independently composed of a mixture including inorganic particles and a binder polymer. The first porous coating layer is thicker than the second porous coating layer. The electrochemical device has good thermal stability and improved cycle characteristics.
    Type: Application
    Filed: June 15, 2012
    Publication date: October 4, 2012
    Applicant: LG CHEM, LTD.
    Inventors: Joo-Sung LEE, Jang-Hyuk HONG, Jong-Hun KIM, Bo-Kyung RYU
  • Patent number: 8268056
    Abstract: Disclosed is a method for manufacturing a separator. The method includes (S1) preparing a porous planar substrate having a plurality of pores, (S2) preparing a slurry containing inorganic particles dispersed therein and a polymer solution including a first binder polymer and a second binder polymer in a solvent, and sequentially coating the slurry on the porous substrate through a first discharge hole and a non-solvent incapable of dissolving the second binder polymer on the slurry through a second discharge hole adjacent to the first discharge hole, and (S3) simultaneously removing the solvent and the non-solvent by drying. According to the method, a separator with good bindability to electrodes can be manufactured in an easy manner. In addition, problems associated with the separation of inorganic particles in the course of manufacturing an electrochemical device can be avoided.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: September 18, 2012
    Assignee: LG Chem, Ltd.
    Inventors: Joo-Sung Lee, Jang-Hyuk Hong, Jong-Hun Kim, Bo-Kyung Ryu
  • Publication number: 20120115036
    Abstract: Disclosed is a method for manufacturing a separator. The method includes (S1) preparing a porous planar substrate having a plurality of pores, (S2) preparing a slurry containing inorganic particles dispersed therein and a polymer solution including a first binder polymer and a second binder polymer in a solvent, and coating the slurry on at least one surface of the porous substrate, (S3) spraying a non-solvent incapable of dissolving the second binder polymer on the slurry, and (S4) simultaneously removing the solvent and the non-solvent by drying. According to the method, a separator with good bindability to electrodes can be manufactured in an easy manner. In addition, problems associated with the separation of inorganic particles in the course of manufacturing an electrochemical device can be avoided.
    Type: Application
    Filed: December 20, 2011
    Publication date: May 10, 2012
    Applicant: LG CHEM, LTD.
    Inventors: Joo-Sung Lee, Jang Hyuk Hong, Jong-Hun Kim, Bo-Kyung Ryu
  • Publication number: 20120090758
    Abstract: Disclosed is a method for manufacturing a separator. The method includes (S1) preparing a porous planar substrate having a plurality of pores, (S2) preparing a slurry containing inorganic particles dispersed therein and a polymer solution including a first binder polymer and a second binder polymer in a solvent, and sequentially coating the slurry on the porous substrate through a first discharge hole and a non-solvent incapable of dissolving the second binder polymer on the slurry through a second discharge hole adjacent to the first discharge hole, and (S3) simultaneously removing the solvent and the non-solvent by drying. According to the method, a separator with good bindability to electrodes can be manufactured in an easy manner. In addition, problems associated with the separation of inorganic particles in the course of manufacturing an electrochemical device can be avoided.
    Type: Application
    Filed: December 20, 2011
    Publication date: April 19, 2012
    Applicant: LG CHEM, LTD.
    Inventors: Joo Sung LEE, Jang Hyuk HONG, Jong-Hun KIM, Bo-Kyung RYU