Patents by Inventor Bo-Syuan Lee

Bo-Syuan Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8999793
    Abstract: A Multi-Gate Field-Effect Transistor includes a fin-shaped structure, a gate structure, at least an epitaxial structure and a gradient cap layer. The fin-shaped structure is located on a substrate. The gate structure is disposed across a part of the fin-shaped structure and the substrate. The epitaxial structure is located on the fin-shaped structure beside the gate structure. The gradient cap layer is located on each of the epitaxial structures. The gradient cap layer is a compound semiconductor, and the concentration of one of the ingredients of the compound semiconductor has a gradient distribution decreasing from inner to outer. Moreover, the present invention also provides a Multi-Gate Field-Effect Transistor process forming said Multi-Gate Field-Effect Transistor.
    Type: Grant
    Filed: June 17, 2014
    Date of Patent: April 7, 2015
    Assignee: United Microelectronics Corp.
    Inventors: Chin-I Liao, Chia-Lin Hsu, Ming-Yen Li, Yung-Lun Hsieh, Chien-Hao Chen, Bo-Syuan Lee
  • Patent number: 8883033
    Abstract: A method for removing silicon nitride material includes following steps. A substrate having at least a gate structure formed thereon is provided, and at least a silicon nitride hard mask is formed on top of the gate structure. A first removal is performed to remove a portion of the silicon nitride hard mask with a first phosphoric acid (H3PO4) solution. A second removal is subsequently performed to remove remnant silicon nitride hard mask with a second phosphoric acid solution. The first removal and the second removal are performed in-situ. A temperature of the second phosphoric acid solution is lower than a temperature of the first phosphoric acid solution.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: November 11, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Chi-Sheng Chen, Shin-Chi Chen, Chih-Yueh Li, Ted Ming-Lang Guo, Bo-Syuan Lee, Tsung-Hsun Tsai, Yu-Chin Cheng
  • Publication number: 20140295634
    Abstract: A Multi-Gate Field-Effect Transistor includes a fin-shaped structure, a gate structure, at least an epitaxial structure and a gradient cap layer. The fin-shaped structure is located on a substrate. The gate structure is disposed across a part of the fin-shaped structure and the substrate. The epitaxial structure is located on the fin-shaped structure beside the gate structure. The gradient cap layer is located on each of the epitaxial structures. The gradient cap layer is a compound semiconductor, and the concentration of one of the ingredients of the compound semiconductor has a gradient distribution decreasing from inner to outer. Moreover, the present invention also provides a Multi-Gate Field-Effect Transistor process forming said Multi-Gate Field-Effect Transistor.
    Type: Application
    Filed: June 17, 2014
    Publication date: October 2, 2014
    Inventors: Chin-I Liao, Chia-Lin Hsu, Ming-Yen Li, Yung-Lun Hsieh, Chien-Hao Chen, Bo-Syuan Lee
  • Publication number: 20140256151
    Abstract: A method for removing silicon nitride material includes following steps. A substrate having at least a gate structure formed thereon is provided, and at least a silicon nitride hard mask is formed on top of the gate structure. A first removal is performed to remove a portion of the silicon nitride hard mask with a first phosphoric acid (H3PO4) solution. A second removal is subsequently performed to remove remnant silicon nitride hard mask with a second phosphoric acid solution. The first removal and the second removal are performed in-situ. A temperature of the second phosphoric acid solution is lower than a temperature of the first phosphoric acid solution.
    Type: Application
    Filed: March 5, 2013
    Publication date: September 11, 2014
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chi-Sheng Chen, Shin-Chi Chen, Chih-Yueh Li, Ted Ming-Lang Guo, Bo-Syuan Lee, Tsung-Hsun Tsai, Yu-Chin Cheng
  • Patent number: 8796695
    Abstract: A Multi-Gate Field-Effect Transistor includes a fin-shaped structure, a gate structure, at least an epitaxial structure and a gradient cap layer. The fin-shaped structure is located on a substrate. The gate structure is disposed across a part of the fin-shaped structure and the substrate. The epitaxial structure is located on the fin-shaped structure beside the gate structure. The gradient cap layer is located on each of the epitaxial structures. The gradient cap layer is a compound semiconductor, and the concentration of one of the ingredients of the compound semiconductor has a gradient distribution decreasing from bottom to top. Moreover, the present invention also provides a Multi-Gate Field-Effect Transistor process forming said Multi-Gate Field-Effect Transistor.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: August 5, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Chin-I Liao, Chia-Lin Hsu, Ming-Yen Li, Yung-Lun Hsieh, Chien-Hao Chen, Bo-Syuan Lee
  • Patent number: 8709910
    Abstract: A semiconductor process includes the following steps. A semiconductor substrate is provided. The semiconductor substrate has a patterned isolation layer and the patterned isolation layer has an opening exposing a silicon area of the semiconductor substrate. A silicon rich layer is formed on the sidewalls of the opening. An epitaxial process is performed to form an epitaxial structure on the silicon area in the opening.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: April 29, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Chin-I Liao, Chia-Lin Hsu, Yung-Lun Hsieh, Chien-Hao Chen, Bo-Syuan Lee, Min-Chung Cheng
  • Patent number: 8674433
    Abstract: A semiconductor process includes the following steps. A substrate is provided. At least a fin-shaped structure is formed on the substrate. An oxide layer is formed on the substrate without the fin-shaped structure being formed thereon. A gate is formed to cover a part of the oxide layer and a part of the fin-shaped structure. An etching process is performed to etch a part of the fin-shaped structure beside the gate, therefore at least a recess is formed in the fin-shaped structure. An epitaxial process is performed to form an epitaxial layer in the recess, wherein the epitaxial layer has a hexagon-shaped profile structure.
    Type: Grant
    Filed: August 24, 2011
    Date of Patent: March 18, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Chin-I Liao, Chia-Lin Hsu, Ming-Yen Li, Hsin-Huei Wu, Yung-Lun Hsieh, Chien-Hao Chen, Bo-Syuan Lee
  • Publication number: 20130341638
    Abstract: A Multi-Gate Field-Effect Transistor includes a fin-shaped structure, a gate structure, at least an epitaxial structure and a gradient cap layer. The fin-shaped structure is located on a substrate. The gate structure is disposed across a part of the fin-shaped structure and the substrate. The epitaxial structure is located on the fin-shaped structure beside the gate structure. The gradient cap layer is located on each of the epitaxial structures. The gradient cap layer is a compound semiconductor, and the concentration of one of the ingredients of the compound semiconductor has a gradient distribution decreasing from bottom to top. Moreover, the present invention also provides a Multi-Gate Field-Effect Transistor process forming said Multi-Gate Field-Effect Transistor.
    Type: Application
    Filed: June 22, 2012
    Publication date: December 26, 2013
    Inventors: Chin-I Liao, Chia-Lin Hsu, Ming-Yen Li, Yung-Lun Hsieh, Chien-Hao Chen, Bo-Syuan Lee
  • Publication number: 20130288448
    Abstract: A semiconductor process includes the following steps. A semiconductor substrate is provided. The semiconductor substrate has a patterned isolation layer and the patterned isolation layer has an opening exposing a silicon area of the semiconductor substrate. A silicon rich layer is formed on the sidewalls of the opening. An epitaxial process is performed to form an epitaxial structure on the silicon area in the opening.
    Type: Application
    Filed: April 30, 2012
    Publication date: October 31, 2013
    Inventors: Chin-I Liao, Chia-Lin Hsu, Yung-Lun Hsieh, Chien-Hao Chen, Bo-Syuan Lee, Min-Chung Cheng
  • Publication number: 20130122698
    Abstract: A method for manufacturing multi-gate transistor device includes providing a semiconductor substrate having a patterned semiconductor layer and a patterned hard mask sequentially formed thereon, removing the patterned hard mask, performing a thermal treatment to rounding the patterned semiconductor layer with a process temperature lower than 800° C., and sequentially forming a gate dielectric layer and a gate layer covering a portion of the patterned semiconductor layer on the semiconductor substrate.
    Type: Application
    Filed: November 16, 2011
    Publication date: May 16, 2013
    Inventors: Chin-I Liao, Chia-Lin Hsu, Ming-Yen Li, Min-Ying Hsu, Hsin-Huei Wu, Yung-Lun Hsieh, Chien-Hao Chen, Bo-Syuan Lee
  • Patent number: 8440511
    Abstract: A method for manufacturing multi-gate transistor device includes providing a semiconductor substrate having a patterned semiconductor layer and a patterned hard mask sequentially formed thereon, removing the patterned hard mask, performing a thermal treatment to rounding the patterned semiconductor layer with a process temperature lower than 800° C., and sequentially forming a gate dielectric layer and a gate layer covering a portion of the patterned semiconductor layer on the semiconductor substrate.
    Type: Grant
    Filed: November 16, 2011
    Date of Patent: May 14, 2013
    Assignee: United Microelectronics Corp.
    Inventors: Chin-I Liao, Chia-Lin Hsu, Ming-Yen Li, Min-Ying Hsu, Hsin-Huei Wu, Yung-Lun Hsieh, Chien-Hao Chen, Bo-Syuan Lee
  • Publication number: 20130052778
    Abstract: A semiconductor process includes the following steps. A substrate is provided. At least a fin-shaped structure is formed on the substrate. An oxide layer is formed on the substrate without the fin-shaped structure being formed thereon. A gate is formed to cover a part of the oxide layer and a part of the fin-shaped structure. An etching process is performed to etch a part of the fin-shaped structure beside the gate, therefore at least a recess is formed in the fin-shaped structure. An epitaxial process is performed to form an epitaxial layer in the recess, wherein the epitaxial layer has a hexagon-shaped profile structure.
    Type: Application
    Filed: August 24, 2011
    Publication date: February 28, 2013
    Inventors: Chin-I Liao, Chia-Lin Hsu, Ming-Yen Li, Hsin-Huei Wu, Yung-Lun Hsieh, Chien-Hao Chen, Bo-Syuan Lee