Patents by Inventor Bob Maraschin

Bob Maraschin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8490573
    Abstract: Broadly speaking, a method and an apparatus are provided for depositing a material on a semiconductor wafer (“wafer”). More specifically, the method and apparatus provide for selective heating of a surface of the wafer exposed to an electroless plating solution. The selective heating is provided by applying radiant energy to the wafer surface. The selective heating of the wafer surface causes a temperature increase at an interface between the wafer surface and the electroless plating solution. The temperature increase at the interface in turn causes a plating reaction to occur at the wafer surface. Thus, material is deposited on the wafer surface through an electroless plating reaction that is initiated and controlled by varying the temperature of the wafer surface using an appropriately defined radiant energy source.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: July 23, 2013
    Assignee: Lam Research Corporation
    Inventors: Yezdi Dordi, John Boyd, William Thie, Bob Maraschin, Fred C. Redeker, Joel M. Cook
  • Patent number: 8419917
    Abstract: An electroplating head is disposed above and proximate to an upper surface of a wafer. Cations are transferred from an anode to an electroplating solution within the electroplating head. The electroplating solution flows downward through a porous electrically resistive material at an exit of the electroplating head to be disposed on the upper surface of the wafer. An electric current is established between the anode and the upper surface of the wafer through the electroplating solution. The electric current is uniformly distributed by the porous electrically resistive material present between the anode and the upper surface of the wafer. The electric current causes the cations to be attracted to the upper surface of the wafer.
    Type: Grant
    Filed: June 10, 2009
    Date of Patent: April 16, 2013
    Assignee: Lam Research Corporation
    Inventors: Yezdi Dordi, Bob Maraschin, John Boyd, Fred C. Redeker
  • Patent number: 8048283
    Abstract: First and second electrodes are disposed at first and second locations, respectively, proximate to a periphery of a wafer support, wherein the first and second location are substantially opposed to each other relative to the wafer support. Each of the first and second electrodes can be moved to electrically connect with and disconnect from a wafer held by the wafer support. An anode is disposed over and proximate to the wafer such that a meniscus of electroplating solution is maintained between the anode and the wafer. As the anode moves over the wafer from the first location to the second location, an electric current is applied through the meniscus between the anode and the wafer. Also, as the anode is moved over the wafer, the first and second electrodes are controlled to connect with the wafer while ensuring that the anode does not pass over an electrode that is connected.
    Type: Grant
    Filed: March 15, 2010
    Date of Patent: November 1, 2011
    Assignee: Lam Research Corporation
    Inventors: Yezdi Dordi, Bob Maraschin, John Boyd, Fred C. Redeker, Carl Woods
  • Publication number: 20110081779
    Abstract: Broadly speaking, a method and an apparatus are provided for depositing a material on a semiconductor wafer (“wafer”). More specifically, the method and apparatus provide for selective heating of a surface of the wafer exposed to an electroless plating solution. The selective heating is provided by applying radiant energy to the wafer surface. The selective heating of the wafer surface causes a temperature increase at an interface between the wafer surface and the electroless plating solution. The temperature increase at the interface in turn causes a plating reaction to occur at the wafer surface. Thus, material is deposited on the wafer surface through an electroless plating reaction that is initiated and controlled by varying the temperature of the wafer surface using an appropriately defined radiant energy source.
    Type: Application
    Filed: December 14, 2010
    Publication date: April 7, 2011
    Applicant: Lam Research Corporation
    Inventors: Yezdi Dordi, John Boyd, William Thie, Bob Maraschin, Fred C. Redeker, Joel M. Cook
  • Patent number: 7875554
    Abstract: Broadly speaking, a method and an apparatus are provided for depositing a material on a semiconductor wafer (“wafer”). More specifically, the method and apparatus provide for selective heating of a surface of the wafer exposed to an electroless plating solution. The selective heating is provided by applying radiant energy to the wafer surface. The selective heating of the wafer surface causes a temperature increase at an interface between the wafer surface and the electroless plating solution. The temperature increase at the interface in turn causes a plating reaction to occur at the wafer surface. Thus, material is deposited on the wafer surface through an electroless plating reaction that is initiated and controlled by varying the temperature of the wafer surface using an appropriately defined radiant energy source.
    Type: Grant
    Filed: March 7, 2008
    Date of Patent: January 25, 2011
    Assignee: Lam Research Corporation
    Inventors: Yezdi Dordi, John Boyd, William Thie, Bob Maraschin, Fred C. Redeker, Joel M. Cook
  • Publication number: 20100170803
    Abstract: First and second electrodes are disposed at first and second locations, respectively, proximate to a periphery of a wafer support, wherein the first and second location are substantially opposed to each other relative to the wafer support. Each of the first and second electrodes can be moved to electrically connect with and disconnect from a wafer held by the wafer support. An anode is disposed over and proximate to the wafer such that a meniscus of electroplating solution is maintained between the anode and the wafer. As the anode moves over the wafer from the first location to the second location, an electric current is applied through the meniscus between the anode and the wafer. Also, as the anode is moved over the wafer, the first and second electrodes are controlled to connect with the wafer while ensuring that the anode does not pass over an electrode that is connected.
    Type: Application
    Filed: March 15, 2010
    Publication date: July 8, 2010
    Applicant: Lam Research Corporation
    Inventors: Yezdi Dordi, Bob Maraschin, John Boyd, Fred C. Redeker, Carl Woods
  • Patent number: 7704367
    Abstract: First and second electrodes are disposed at first and second locations, respectively, proximate to a periphery of a wafer support, wherein the first and second location are substantially opposed to each other relative to the wafer support. Each of the first and second electrodes can be moved to electrically connect with and disconnect from a wafer held by the wafer support. An anode is disposed over and proximate to the wafer such that a meniscus of electroplating solution is maintained between the anode and the wafer. As the anode moves over the wafer from the first location to the second location, an electric current is applied through the meniscus between the anode and the wafer. Also, as the anode is moved over the wafer, the first and second electrodes are controlled to connect with the wafer while ensuring that the anode does not pass over an electrode that is connected.
    Type: Grant
    Filed: June 28, 2004
    Date of Patent: April 27, 2010
    Assignee: Lam Research Corporation
    Inventors: Yezdi Dordi, Bob Maraschin, John Boyd, Fred C. Redeker, Carl Woods
  • Publication number: 20090242413
    Abstract: An electroplating head is disposed above and proximate to an upper surface of a wafer. Cations are transferred from an anode to an electroplating solution within the electroplating head. The electroplating solution flows downward through a porous electrically resistive material at an exit of the electroplating head to be disposed on the upper surface of the wafer. An electric current is established between the anode and the upper surface of the wafer through the electroplating solution. The electric current is uniformly distributed by the porous electrically resistive material present between the anode and the upper surface of the wafer. The electric current causes the cations to be attracted to the upper surface of the wafer.
    Type: Application
    Filed: June 10, 2009
    Publication date: October 1, 2009
    Applicant: Lam Research Corporation
    Inventors: Yezdi Dordi, Bob Maraschin, John Boyd, Fred C. Redeker
  • Patent number: 7582565
    Abstract: Broadly speaking, the present invention provides a method and an apparatus for planarizing a semiconductor wafer (“wafer”). More specifically, the present invention provides for depositing a planarizing layer over the wafer, wherein the planarizing layer serves to fill recessed areas present on a surface of the wafer. A planar member is positioned over and proximate to a top surface of the wafer. Positioning of the planar member serves to entrap electroless plating solution between the planar member and the wafer surface. Radiant energy is applied to the wafer surface to cause a temperature increase at an interface between the wafer surface and the electroless plating solution. The temperature increase in turn causes plating reactions to occur at the wafer surface. Material deposited through the plating reactions forms a planarizing layer that conforms to a planarity of the planar member.
    Type: Grant
    Filed: March 24, 2008
    Date of Patent: September 1, 2009
    Assignee: Lam Research Corporation
    Inventors: Fred C. Redeker, John Boyd, Yezdi Dordi, William Thie, Bob Maraschin
  • Patent number: 7563348
    Abstract: An electroplating head including a chamber having a fluid entrance and a fluid exit is provided. The chamber is configured to contain a flow of electroplating solution from the fluid entrance to the fluid exit. The electroplating head also includes an anode disposed within the chamber. The anode is configured to be electrically connected to a power supply. The electroplating head further includes a porous resistive material disposed at the fluid exit such that the flow of electroplating solution is required to traverse through the porous resistive material.
    Type: Grant
    Filed: June 28, 2004
    Date of Patent: July 21, 2009
    Assignee: Lam Research Corporation
    Inventors: Yezdi Dordi, Bob Maraschin, John Boyd, Fred C. Redeker
  • Publication number: 20080166885
    Abstract: Broadly speaking, the present invention provides a method and an apparatus for planarizing a semiconductor wafer (“wafer”). More specifically, the present invention provides for depositing a planarizing layer over the wafer, wherein the planarizing layer serves to fill recessed areas present on a surface of the wafer. A planar member is positioned over and proximate to a top surface of the wafer. Positioning of the planar member serves to entrap electroless plating solution between the planar member and the wafer surface. Radiant energy is applied to the wafer surface to cause a temperature increase at an interface between the wafer surface and the electroless plating solution. The temperature increase in turn causes plating reactions to occur at the wafer surface. Material deposited through the plating reactions forms a planarizing layer that conforms to a planarity of the planar member.
    Type: Application
    Filed: March 24, 2008
    Publication date: July 10, 2008
    Applicant: Lam Research Corporation
    Inventors: Fred C. Redeker, John Boyd, Yezdi Dordi, William Thie, Bob Maraschin
  • Publication number: 20080153291
    Abstract: Broadly speaking, a method and an apparatus are provided for depositing a material on a semiconductor wafer (“wafer”). More specifically, the method and apparatus provide for selective heating of a surface of the wafer exposed to an electroless plating solution. The selective heating is provided by applying radiant energy to the wafer surface. The selective heating of the wafer surface causes a temperature increase at an interface between the wafer surface and the electroless plating solution. The temperature increase at the interface in turn causes a plating reaction to occur at the wafer surface. Thus, material is deposited on the wafer surface through an electroless plating reaction that is initiated and controlled by varying the temperature of the wafer surface using an appropriately defined radiant energy source.
    Type: Application
    Filed: March 7, 2008
    Publication date: June 26, 2008
    Applicant: Lam Research Corporation
    Inventors: Yezdi Dordi, John Boyd, William Thie, Bob Maraschin, Fred C. Redeker, Joel M. Cook
  • Patent number: 7368017
    Abstract: Broadly speaking, the present invention provides a method and an apparatus for planarizing a semiconductor wafer (“wafer”). More specifically, the present invention provides for depositing a planarizing layer over the wafer, wherein the planarizing layer serves to fill recessed areas present on a surface of the wafer. A planar member is positioned over and proximate to a top surface of the wafer. Positioning of the planar member serves to entrap electroless plating solution between the planar member and the wafer surface. Radiant energy is applied to the wafer surface to cause a temperature increase at an interface between the wafer surface and the electroless plating solution. The temperature increase in turn causes plating reactions to occur at the wafer surface. Material deposited through the plating reactions forms a planarizing layer that conforms to a planarity of the planar member.
    Type: Grant
    Filed: December 12, 2003
    Date of Patent: May 6, 2008
    Assignee: Lam Research Corporation
    Inventors: Fred C. Redeker, John Boyd, Yezdi Dordi, William Thie, Bob Maraschin
  • Patent number: 7358186
    Abstract: Broadly speaking, a method and an apparatus are provided for depositing a material on a semiconductor wafer (“wafer”). More specifically, the method and apparatus provide for selective heating of a surface of the wafer exposed to an electroless plating solution. The selective heating is provided by applying radiant energy to the wafer surface. The selective heating of the wafer surface causes a temperature increase at an interface between the wafer surface and the electroless plating solution. The temperature increase at the interface in turn causes a plating reaction to occur at the wafer surface. Thus, material is deposited on the wafer surface through an electroless plating reaction that is initiated and controlled by varying the temperature of the wafer surface using an appropriately defined radiant energy source.
    Type: Grant
    Filed: December 12, 2003
    Date of Patent: April 15, 2008
    Assignee: Lam Research Corporation
    Inventors: Yezdi Dordi, John Boyd, William Thie, Bob Maraschin, Fred C. Redeker, Joel M. Cook
  • Publication number: 20050284748
    Abstract: An electroplating head including a chamber having a fluid entrance and a fluid exit is provided. The chamber is configured to contain a flow of electroplating solution from the fluid entrance to the fluid exit. The electroplating head also includes an anode disposed within the chamber. The anode is configured to be electrically connected to a power supply. The electroplating head further includes a porous resistive material disposed at the fluid exit such that the flow of electroplating solution is required to traverse through the porous resistive material.
    Type: Application
    Filed: June 28, 2004
    Publication date: December 29, 2005
    Applicant: Lam Research Corporation
    Inventors: Yezdi Dordi, Bob Maraschin, John Boyd, Fred Redeker
  • Publication number: 20050284767
    Abstract: First and second electrodes are disposed at first and second locations, respectively, proximate to a periphery of a wafer support, wherein the first and second location are substantially opposed to each other relative to the wafer support. Each of the first and second electrodes can be moved to electrically connect with and disconnect from a wafer held by the wafer support. An anode is disposed over and proximate to the wafer such that a meniscus of electroplating solution is maintained between the anode and the wafer. As the anode moves over the wafer from the first location to the second location, an electric current is applied through the meniscus between the anode and the wafer. Also, as the anode is moved over the wafer, the first and second electrodes are controlled to connect with the wafer while ensuring that the anode does not pass over an electrode that is connected.
    Type: Application
    Filed: June 28, 2004
    Publication date: December 29, 2005
    Applicant: Lam Research Corporation
    Inventors: Yezdi Dordi, Bob Maraschin, John Boyd, Fred Redeker, Carl Woods
  • Publication number: 20050130415
    Abstract: Broadly speaking, a method and an apparatus are provided for depositing a material on a semiconductor wafer (“wafer”). More specifically, the method and apparatus provide for selective heating of a surface of the wafer exposed to an electroless plating solution. The selective heating is provided by applying radiant energy to the wafer surface. The selective heating of the wafer surface causes a temperature increase at an interface between the wafer surface and the electroless plating solution. The temperature increase at the interface in turn causes a plating reaction to occur at the wafer surface. Thus, material is deposited on the wafer surface through an electroless plating reaction that is initiated and controlled by varying the temperature of the wafer surface using an appropriately defined radiant energy source.
    Type: Application
    Filed: December 12, 2003
    Publication date: June 16, 2005
    Applicant: Lam Research Corporation
    Inventors: Yezdi Dordi, John Boyd, William Thie, Bob Maraschin, Fred Redeker, Joel Cook
  • Publication number: 20050126932
    Abstract: Broadly speaking, the present invention provides a method and an apparatus for planarizing a semiconductor wafer (“wafer”). More specifically, the present invention provides for depositing a planarizing layer over the wafer, wherein the planarizing layer serves to fill recessed areas present on a surface of the wafer. A planar member is positioned over and proximate to a top surface of the wafer. Positioning of the planar member serves to entrap electroless plating solution between the planar member and the wafer surface. Radiant energy is applied to the wafer surface to cause a temperature increase at an interface between the wafer surface and the electroless plating solution. The temperature increase in turn causes plating reactions to occur at the wafer surface. Material deposited through the plating reactions forms a planarizing layer that conforms to a planarity of the planar member.
    Type: Application
    Filed: December 12, 2003
    Publication date: June 16, 2005
    Applicant: Lam Research Corporation
    Inventors: Fred Redeker, John Boyd, Yezdi Dordi, William Thie, Bob Maraschin