Patents by Inventor Bob R. Powell

Bob R. Powell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10620275
    Abstract: A number of variations may include products and methods for estimating the state of an energy system. At least one sensor may monitor a voltage and a current of the energy storage system. An electronic controller may be communicatively coupled with the energy storage system and may receive input from the sensor. A circuit may be representative of the energy storage system and may be appropriately defined in the electronic controller. The circuit may estimate a state of the energy storage system from a reading of the voltage and the current.
    Type: Grant
    Filed: August 25, 2016
    Date of Patent: April 14, 2020
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Mark W. Verbrugge, Charles W. Wampler, Bob R. Powell, Jr.
  • Patent number: 10581119
    Abstract: Electrochemical cells that cycle lithium ions and methods for suppressing or minimizing dendrite formation are provided. The electrochemical cells include a positive electrode, a negative electrode, and a separator disposed therebetween. At least one transition metal ion-trapping moiety, including one or more polymers functionalized with one or more trapping groups, may be included within the electrochemical cell as a coating, pore filler, substitute pendant group, or binder. The one or more trapping groups may be selected from the group consisting of: crown ethers, siderophores, bactins, ortho-phenanthroline, iminodiacetic acid dilithium salt, oxalates malonates, fumarates, succinates, itaconates, phosphonates, and combinations thereof, and may bind to metal ions found within the electrochemical cell to minimize or suppress formation of dendrite protrusions on the negative electrode.
    Type: Grant
    Filed: July 7, 2017
    Date of Patent: March 3, 2020
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Ion C. Halalay, Zicheng Li, Timothy J. Fuller, Bob R. Powell, Jr.
  • Patent number: 10581117
    Abstract: Electrochemical cells that cycle lithium ions and methods for suppressing or minimizing deposition of transition metal ions at negative electrodes are provided. The electrochemical cells include a positive electrode, a negative electrode, a separator disposed therebetween, and an electrolyte system including one or more lithium salts, one or more solvents, and at least one additive complexing compound. The at least one additive complexing compound includes an alkyl group having greater than or equal to 4 carbon atoms and less than or equal to 22 carbon atoms and a transition metal ion trapping group. The at least one additive compound associates with a surface of the separator via van der Waal's interactive forces and is further capable of complexing with transition metal ion within the electrochemical cell to sequester or tether the ions generated by contaminants to minimize or suppress the deposition of transition metal cations on the negative electrode.
    Type: Grant
    Filed: July 7, 2017
    Date of Patent: March 3, 2020
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Ion C. Halalay, Timothy J. Fuller, Bob R. Powell, Jr.
  • Patent number: 10411252
    Abstract: A positive electrode composition includes a binder material; an electrically conductive material dispersible in the binder material and comprising a plurality of conductive carbon particles; an active material dispersible in the binder material and comprising a plurality of active particles; and a coating agent comprising one of a non-lithiated polymer, an at least partially-lithiated polymer, and a fully-lithiated polymer. The coating agent is disposed on and at least partially encapsulates at least one of: each of the plurality of conductive carbon particles and each of the plurality of active particles. A positive electrode of a lithium ion electrochemical cell includes a current collector comprising aluminum and a layer formed from the positive electrode composition and disposed on the current collector. A method of forming the positive electrode is also disclosed.
    Type: Grant
    Filed: February 9, 2016
    Date of Patent: September 10, 2019
    Assignee: GM Global Technology Operations LLC
    Inventors: Nicholas P. W. Pieczonka, Jung-Hyun Kim, Bob R. Powell, Jr., Mark W. Verbrugge
  • Patent number: 10220835
    Abstract: In a vehicle, a first energy storage device has a first direct current (DC) operating voltage; and a second energy storage device has a second DC operating voltage. The second DC operating voltage is greater than or less than the first DC operating voltage the first DC operating voltage. A switch is connected between the first and second energy storage devices. A fault diagnostic module, while an internal combustion engine of the vehicle is shut down, diagnoses that a fault is present when a voltage of the first energy storage device is less than a predetermined DC voltage. The predetermined DC voltage is less than the first DC operating voltage. A switch control module closes the switch when the fault is diagnosed. A starter control module, when the fault is diagnosed, applies power to a starter from the second energy storage device via the switch.
    Type: Grant
    Filed: March 1, 2017
    Date of Patent: March 5, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Scott W. Jorgensen, Bob R. Powell, Jr., Robert S. Conell, Mark W. Verbrugge
  • Patent number: 10211452
    Abstract: A lithium ion battery component includes a support selected from the group consisting of a current collector, a negative electrode, and a porous polymer separator. A lithium donor is present i) as an additive with a non-lithium active material in a negative electrode on the current collector, or ii) as a coating on at least a portion of the negative electrode, or iii) as a coating on at least a portion of the porous polymer separator. The lithium donor has a formula selected from the group consisting of Li8-yMyP4, wherein M is Fe, V, or Mn and wherein y ranges from 1 to 4; Li10-yTiyP4, wherein y ranges from 1 to 2; LixP, wherein 0<x?3; and Li2CuP.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: February 19, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Meng Jiang, Bob R. Powell, Jr., Jung-Hyun Kim
  • Publication number: 20190013551
    Abstract: Electrochemical cells that cycle lithium ions and methods for suppressing or minimizing dendrite formation are provided. The electrochemical cells include a positive electrode, a negative electrode, and a separator disposed therebetween. At least one transition metal ion-trapping moiety, including one or more polymers functionalized with one or more trapping groups, may be included within the electrochemical cell as a coating, pore filler, substitute pendant group, or binder. The one or more trapping groups may be selected from the group consisting of: crown ethers, siderophores, bactins, ortho-phenanthroline, iminodiacetic acid dilithium salt, oxalates malonates, fumarates, succinates, itaconates, phosphonates, and combinations thereof, and may bind to metal ions found within the electrochemical cell to minimize or suppress formation of dendrite protrusions on the negative electrode.
    Type: Application
    Filed: July 7, 2017
    Publication date: January 10, 2019
    Inventors: Ion C. Halalay, Zicheng Li, Timothy J. Fuller, Bob R. Powell, JR.
  • Publication number: 20190013548
    Abstract: Electrochemical cells that cycle lithium ions and methods for suppressing or minimizing deposition of transition metal ions at negative electrodes are provided. The electrochemical cells include a positive electrode, a negative electrode, a separator disposed therebetween, and an electrolyte system including one or more lithium salts, one or more solvents, and at least one additive complexing compound. The at least one additive complexing compound includes an alkyl group having greater than or equal to 4 carbon atoms and less than or equal to 22 carbon atoms and a transition metal ion trapping group. The at least one additive compound associates with a surface of the separator via van der Waal's interactive forces and is further capable of complexing with transition metal ion within the electrochemical cell to sequester or tether the ions generated by contaminants to minimize or suppress the deposition of transition metal cations on the negative electrode.
    Type: Application
    Filed: July 7, 2017
    Publication date: January 10, 2019
    Inventors: Ion C. Halalay, Timothy J. Fuller, Bob R. Powell, JR.
  • Patent number: 10122002
    Abstract: A lithium-ion conducting, solid electrolyte is deposited on a thin, flexible, porous alumina membrane which is placed between co-extensive facing side surfaces of a porous, lithium-accepting, negative electrode and a positive electrode formed of a porous layer of particles of a compound of lithium, a transition metal element, and optionally, another metal element. A liquid electrolyte formed, for example, of LiPF6 dissolved in an organic solvent, infiltrates the electrode materials of the two porous electrodes for transport of lithium ions during cell operation. But the solid electrolyte permits the passage of only lithium ions, and the negative electrode is protected from damage by transition metal ions or other chemical species produced in the positive electrode of the lithium-ion cell.
    Type: Grant
    Filed: January 21, 2015
    Date of Patent: November 6, 2018
    Assignee: GM Global Technology Operations LLC
    Inventors: Jung Hyun Kim, Bob R. Powell, Jr., Meng Jiang, Peng Lu, Xingcheng Xiao, Nicholas P. W. Pieczonka
  • Publication number: 20180251121
    Abstract: In a vehicle, a first energy storage device has a first direct current (DC) operating voltage; and a second energy storage device has a second DC operating voltage. The second DC operating voltage is greater than or less than the first DC operating voltage the first DC operating voltage. A switch is connected between the first and second energy storage devices. A fault diagnostic module, while an internal combustion engine of the vehicle is shut down, diagnoses that a fault is present when a voltage of the first energy storage device is less than a predetermined DC voltage. The predetermined DC voltage is less than the first DC operating voltage. A switch control module closes the switch when the fault is diagnosed. A starter control module, when the fault is diagnosed, applies power to a starter from the second energy storage device via the switch.
    Type: Application
    Filed: March 1, 2017
    Publication date: September 6, 2018
    Applicant: GM Global Technology Operations LLC
    Inventors: Scott W. Jorgensen, Bob R. Powell, JR., Robert S. Conell, Mark W. Verbrugge
  • Patent number: 10050313
    Abstract: A lithium ion battery includes a positive and a negative electrode, and a nanoporous or microporous polymer separator soaked in electrolyte solution and disposed between the electrodes. At least two different chelating agents are included and selected to complex with: i) two or more different transition metal ions; ii) a transition metal ion in two or more different oxidation states; or iii) both i) and ii). The at least two different selected chelating agents are to complex with transition metal ions in a manner sufficient to not affect movement of lithium ions across the separator during operation of the battery. The chelating agents are: dissolved or dispersed in the electrolyte solution; grafted onto the polymer of the separator; attached to the binder material of the negative and/or positive electrode; disposed within pores of the separator; coated on a surface of the separator; and/or coated on a surface of an electrode.
    Type: Grant
    Filed: June 19, 2016
    Date of Patent: August 14, 2018
    Assignees: GM GLOBAL TECHNOLOGY OPERATIONS LLC, BAR-ILAN UNIVERSITY
    Inventors: Shalom Luski, Doron Aurbach, Bob R. Powell, Jr., Ion C. Halalay, Timothy J. Fuller, Anjan Banerjee, Baruch Ziv, Yuliya Shilina
  • Patent number: 10008749
    Abstract: A lithium ion battery includes positive and negative electrodes, and a nanoporous or microporous polymer separator soaked in an electrolyte solution, between the positive electrode and the negative electrode. Chelating agent(s) are included to complex with transition metal ions while not affecting movement of lithium ions across the separator during operation of the lithium ion battery. The chelating agents are: dissolved in the electrolyte solution; grafted onto the polymer of the separator; attached to the binder material of the negative and/or positive electrode; coated on a surface of the separator; and/or coated on a surface of the negative and/or positive electrode. The chelating agents are selected from: ion traps in molecular form selected from polyamines, thiols and alkali metal salts of organic acids; polymers functionalized with alkali metal salts of organic acids; polymers functionalized with nitrogen-containing functional groups; and polymers functionalized with two or more functional groups.
    Type: Grant
    Filed: June 19, 2016
    Date of Patent: June 26, 2018
    Assignees: GM GLOBAL TECHNOLOGY OPERATIONS LLC, BAR-ILAN UNIVERSITY
    Inventors: Shalom Luski, Doron Aurbach, Ion C. Halalay, Timothy J. Fuller, Bob R. Powell, Jr., Anjan Banerjee, Baruch Ziv, Yuliya Shilina
  • Publication number: 20180059190
    Abstract: A number of variations may include products and methods for estimating the state of an energy system. At least one sensor may monitor a voltage and a current of the energy storage system. An electronic controller may be communicatively coupled with the energy storage system and may receive input from the sensor. A circuit may be representative of the energy storage system and may be appropriately defined in the electronic controller. The circuit may estimate a state of the energy storage system from a reading of the voltage and the current.
    Type: Application
    Filed: August 25, 2016
    Publication date: March 1, 2018
    Inventors: MARK W. VERBRUGGE, Charles W. Wampler, Bob R. Powell, JR.
  • Publication number: 20180050686
    Abstract: A hybrid vehicle propulsion includes an engine and a first electric machine, where each is configured to selectively provide torque to propel the vehicle. The propulsion system also includes a second electric machine coupled to the engine to provide torque to start the engine from an inactive state. A high-voltage power source is configured to power both of the first electric machine and the second electric machine over a high-voltage bus. The propulsion system further includes a controller programmed to deactivate the engine and propel the vehicle using the first electric machine in response to the vehicle being driven at a steady-state speed for a predetermined duration of time. The controller is also programmed to restart the engine using the second electric machine powered by the high-voltage power source.
    Type: Application
    Filed: August 17, 2016
    Publication date: February 22, 2018
    Inventors: Venkata Prasad Atluri, Norman K. Bucknor, Robert S. Conell, Suresh Gopalakrishnan, Lei Hao, Chunhao J. Lee, Derek F. Lahr, Dongxu Li, Shifang Li, Chandra S. Namuduri, Thomas W. Nehl, Avoki M. Omekanda, Bob R. Powell, JR., Rashmi Prasad, Farzad Samie, Neeraj S. Shidore, Aaron M. Sullivan
  • Publication number: 20170365882
    Abstract: A lithium ion battery includes positive and negative electrodes, and a nanoporous or microporous polymer separator soaked in an electrolyte solution, between the positive electrode and the negative electrode. Chelating agent(s) are included to complex with transition metal ions while not affecting movement of lithium ions across the separator during operation of the lithium ion battery. The chelating agents are: dissolved in the electrolyte solution; grafted onto the polymer of the separator; attached to the binder material of the negative and/or positive electrode; coated on a surface of the separator; and/or coated on a surface of the negative and/or positive electrode. The chelating agents are selected from: ion traps in molecular form selected from polyamines, thiols and alkali metal salts of organic acids; polymers functionalized with alkali metal salts of organic acids; polymers functionalized with nitrogen-containing functional groups; and polymers functionalized with two or more functional groups.
    Type: Application
    Filed: June 19, 2016
    Publication date: December 21, 2017
    Inventors: Shalom Luski, Doron Aurbach, Ion C. Halalay, Timothy J. Fuller, Bob R. Powell, JR., Anjan Banerjee, Baruch Ziv, Yuliya Shilina
  • Publication number: 20170365883
    Abstract: A lithium ion battery includes a positive and a negative electrode, and a nanoporous or microporous polymer separator soaked in electrolyte solution and disposed between the electrodes. At least two different chelating agents are included and selected to complex with: i) two or more different transition metal ions; ii) a transition metal ion in two or more different oxidation states; or iii) both i) and ii). The at least two different selected chelating agents are to complex with transition metal ions in a manner sufficient to not affect movement of lithium ions across the separator during operation of the battery. The chelating agents are: dissolved or dispersed in the electrolyte solution; grafted onto the polymer of the separator; attached to the binder material of the negative and/or positive electrode; disposed within pores of the separator; coated on a surface of the separator; and/or coated on a surface of an electrode.
    Type: Application
    Filed: June 19, 2016
    Publication date: December 21, 2017
    Inventors: Shalom Luski, Doron Aurbach, Bob R. Powell, JR., Ion C. Halalay, Timothy J. Fuller, Anjan Banerjee, Baruch Ziv, Yuliya Shilina
  • Patent number: 9828963
    Abstract: A method for fault-tolerant coasting control of a powertrain system having an engine and a first energy storage system (ESS) includes receiving a real impedance value of the first ESS from a frequency analyzer device at a calibrated frequency while the engine is running, and comparing the real impedance value to a calibrated impedance. A coasting maneuver is enabled allowing the engine to turn off above a threshold speed when the real impedance value is less than the calibrated impedance. The method may include starting the engine using a second ESS in parallel with the first ESS to exit the coasting maneuver when the real impedance value exceeds the calibrated impedance. Subsequent execution of the coasting maneuver may be prevented as long as the real impedance value exceeds the calibrated impedance. A powertrain system includes the engine, starter motor, rechargeable ESS, frequency analyzer, and controller.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: November 28, 2017
    Assignee: GM Global Technology Operations LLC
    Inventors: Robert S. Conell, Bob R. Powell, Jr., Mark W. Verbrugge, Scott W. Jorgensen
  • Publication number: 20170324119
    Abstract: Artifacts from the presence of a reference electrode in a thin-film cell configuration can be minimized or eliminated by providing the surface of a reference electrode with a specified surface resistivity. Theoretical considerations are set forth that show that for a given wire size, there is a theoretical surface resistance (or resistivity) that negates all artifacts from the presence of the reference wire. The theory and the experimental results hold for a electrochemical cell in a thin-film configuration.
    Type: Application
    Filed: April 26, 2017
    Publication date: November 9, 2017
    Applicant: GM Global Technology Operations LLC
    Inventors: Bob R. Powell, JR., Mark W. Verbrugge, Daniel R. Baker
  • Publication number: 20170229705
    Abstract: A positive electrode composition includes a binder material; an electrically conductive material dispersible in the binder material and comprising a plurality of conductive carbon particles; an active material dispersible in the binder material and comprising a plurality of active particles; and a coating agent comprising one of a non-lithiated polymer, an at least partially-lithiated polymer, and a fully-lithiated polymer. The coating agent is disposed on and at least partially encapsulates at least one of: each of the plurality of conductive carbon particles and each of the plurality of active particles. A positive electrode of a lithium ion electrochemical cell includes a current collector comprising aluminum and a layer formed from the positive electrode composition and disposed on the current collector. A method of forming the positive electrode is also disclosed.
    Type: Application
    Filed: February 9, 2016
    Publication date: August 10, 2017
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Nicholas P. W. Pieczonka, Jung-Hyun Kim, Bob R. Powell, JR., Mark W. Verbrugge
  • Publication number: 20170179469
    Abstract: A lithium ion battery component includes a support selected from the group consisting of a current collector, a negative electrode, and a porous polymer separator. A lithium donor is present i) as an additive with a non-lithium active material in a negative electrode on the current collector, or ii) as a coating on at least a portion of the negative electrode, or iii) as a coating on at least a portion of the porous polymer separator. The lithium donor has a formula selected from the group consisting of Li8-yMyP4, wherein M is Fe, V, or Mn and wherein y ranges from 1 to 4; Li10-yTiyP4, wherein y ranges from 1 to 2; LixP, wherein 0<x?3; and Li2CuP.
    Type: Application
    Filed: December 17, 2015
    Publication date: June 22, 2017
    Inventors: Meng Jiang, Bob R. Powell, JR., Jung-Hyun Kim