Patents by Inventor Bob S. Hu

Bob S. Hu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240032867
    Abstract: An implantable device is provided that can include any number of features. In some embodiments, the device includes a coil antenna configured to receive wireless power from a power source external to the patient. The device can include at least one sensor configured to sense a bodily parameter of the patient. The device can also include electronics configured to communicate the sensed bodily parameter of to a device located external to the patient. Methods of use are also described.
    Type: Application
    Filed: February 21, 2023
    Publication date: February 1, 2024
    Inventors: Ada Shuk Yan Poon, Bob S. Hu, Jihoon Jang, Anatoly Yakovlev, Yuji Tanabe, Alex Yeh, Stephanie Hsu, Andrew Ma
  • Publication number: 20200222000
    Abstract: An implantable device is provided that can include any number of features. In some embodiments, the device includes a coil antenna configured to receive wireless power from a power source external to the patient. The device can include at least one sensor configured to sense a bodily parameter of the patient. The device can also include electronics configured to communicate the sensed bodily parameter of to a device located external to the patient. Methods of use are also described.
    Type: Application
    Filed: July 8, 2019
    Publication date: July 16, 2020
    Inventors: Ada Shuk Yan POON, Bob S. HU, Jihoon JANG, Anatoly YAKOVLEV, Yuji TANABE, Alex YEH, Stephanie HSU, Andrew MA
  • Publication number: 20150335285
    Abstract: An implantable device is provided that can include any number of features. In some embodiments, the device induces a coil antenna configured to receive wireless power from a power source external to the patient. The device can include at least one sensor configured to sense a bodily parameter of the patient. The device can also include electronics configured to communicate the sensed bodily parameter of to a device located external to the patient. Methods of use are also described.
    Type: Application
    Filed: October 31, 2013
    Publication date: November 26, 2015
    Inventors: Ada Shuk Yan POON, Bob S. HU, Jihoon JANG, Anatoly YAKOVLEV, Yuji TANABE, Alex YEH, Stephanie HSU, Andrew MA
  • Patent number: 9121915
    Abstract: A 5-dimensional imaging method and system is provided to acquire and display the effect of dynamic physiologic changes (either spontaneous or induced) on cardiac function of a patient's heart to elucidate their effects on diastolic myocardial function. In a patient free-breathing magnetic resonance imaging study, 3-dimensional spatial information is encoded by a non-Cartesian 3-dimensional k-space readout trajectory and acquired concurrently with recordings of cardiac and respiratory cycles. The advantage of using non-Cartesian sampling in this invention compared to, for example, Cartesian sampling is higher scan acceleration, improved robustness to motion/flow effects (incoherent instead of coherent artifacts) and robustness to missing data points in k-space.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: September 1, 2015
    Assignees: The Board of Trustees of the Leland Stanford Junior University, Palo Alto Medical Foundation for Healthcare, Research and Education
    Inventors: Holden H Wu, Bob S Hu
  • Publication number: 20140088407
    Abstract: Selective excitation of spin magnetizations based on their velocities can be a useful tool for generating image contrast in magnetic resonance imaging (MRI) applications. Particularly in MR angiography, velocity-selective (VS) excitation can highlight arterial blood only by utilizing its significantly different velocity from stationary tissues and venous blood in the background. This invention describes the principle and design of MRI pulse sequences based on VS magnetization preparation. Its use for non-contrast enhanced MR angiography is demonstrated. The VS MRA compared to prior methods allows for large angiographic field-of-view and can generate positive angiographic contrast directly using single acquisition without subtraction.
    Type: Application
    Filed: September 24, 2013
    Publication date: March 27, 2014
    Inventors: Taehoon Shin, Bob S. Hu, Dwright G. Nishimura
  • Patent number: 8347738
    Abstract: This invention provides small position sensors for applications where localized sensing in a small volume of space is needed but where measurement of large relative displacement is also necessary. The invention enables a surgeon to accurately position the tip of a catheter during minimally invasive therapy. The current invention further improves the quality of tactile feedback to a physician during catheter-based surgeries with an axial force sensor at the tip of the catheter that allows for the transmission of force information to the physician. One embodiment of this invention is a position sensor for active interventional catheters, where the sensor may be laser-machined shape memory alloy (SMA), and the catheter actuators may be heated SMA or wire-pulleys. Providing position feedback from a catheter during minimally invasive therapy allows for closed-loop control of the catheter tip position under computer-aided guidance and enable force feedback to the physician.
    Type: Grant
    Filed: May 9, 2008
    Date of Patent: January 8, 2013
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Alexander Tung, Günter Niemeyer, David Liang, Byong-Ho Park, Friedrich B. Prinz, Bob S. Hu
  • Publication number: 20120146641
    Abstract: A 5-dimensional imaging method and system is provided to acquire and display the effect of dynamic physiologic changes (either spontaneous or induced) on cardiac function of a patient's heart to elucidate their effects on diastolic myocardial function. In a patient free-breathing magnetic resonance imaging study, 3-dimensional spatial information is encoded by a non-Cartesian 3-dimensional k-space readout trajectory and acquired concurrently with recordings of cardiac and respiratory cycles. The advantage of using non-Cartesian sampling in this invention compared to, for example, Cartesian sampling is higher scan acceleration, improved robustness to motion/flow effects (incoherent instead of coherent artifacts) and robustness to missing data points in k-space.
    Type: Application
    Filed: December 8, 2011
    Publication date: June 14, 2012
    Inventors: Holden H. Wu, Bob S. Hu
  • Publication number: 20090099551
    Abstract: This invention provides small position sensors for applications where localized sensing in a small volume of space is needed but where measurement of large relative displacement is also necessary. The invention enables a surgeon to accurately position the tip of a catheter during minimally invasive therapy. The current invention further improves the quality of tactile feedback to a physician during catheter-based surgeries with an axial force sensor at the tip of the catheter that allows for the transmission of force information to the physician. One embodiment of this invention is a position sensor for active interventional catheters, where the sensor may be laser-machined shape memory alloy (SMA), and the catheter actuators may be heated SMA or wire-pulleys. Providing position feedback from a catheter during minimally invasive therapy allows for closed-loop control of the catheter tip position under computer-aided guidance and enable force feedback to the physician.
    Type: Application
    Filed: May 9, 2008
    Publication date: April 16, 2009
    Inventors: Alexander Tung, Gunter Niemeyer, David Liang, Byong-Ho Park, Friedrich B. Prinz, Bob S. Hu
  • Patent number: 6064290
    Abstract: A homogeneous field electromagnet having at least two coils in each of two regions. One region has a smaller inner radius than the other region so that the magnet is asymmetrical. The magnet has coils with a smaller radius on one side compared to the other side. This provides the benefit of allowing the magnet to be shorter for a given field of view size (compared to a uniform-radius cylindrical magnet). In a preferred embodiment the magnet is short enough so that a patient's heart can be located within the field of view (FOV) while visual access is provided to the patient's face. Specific dimensions are given for the two regions, including lengths, inner radii, and outer radii. The magnet can also include gradient coils and RF electronics for magnetic resonance imaging.
    Type: Grant
    Filed: May 21, 1999
    Date of Patent: May 16, 2000
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Hao Xu, Steven Conolly, Bob S. Hu
  • Patent number: 5651366
    Abstract: A simple forward viewing ultrasound catheter includes one or more transducers and an ultrasound mirror supported by a bearing in a sealed end of a catheter with a drive cable imparting relative motion to the transducer and mirror. The mirror directs ultrasound waves forward of the catheter. An optical fiber can be provided to direct a laser beam for ablation of atheroma while under guidance of simultaneous intravascular ultrasound. A portion of a cavity can be simultaneously imaged while an interventional device operates on the imaged portion of the cavity.
    Type: Grant
    Filed: May 29, 1996
    Date of Patent: July 29, 1997
    Assignee: Board of Trustees of the Leland Stanford Junior University
    Inventors: David H. Liang, Bob S. Hu
  • Patent number: 5606975
    Abstract: A simple forward viewing ultrasound catheter includes one or more transducers and an ultrasound mirror supported by a bearing in a sealed end of a catheter with a drive cable imparting relative motion to the transducer and mirror. The mirror directs ultrasound waves forward of the catheter. An optical fiber can be provided to direct a laser beam for ablation of atheroma while under guidance of simultaneous intravascular ultrasound.
    Type: Grant
    Filed: September 19, 1994
    Date of Patent: March 4, 1997
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: David H. Liang, Bob S. Hu
  • Patent number: 5309099
    Abstract: Real-time spatially localized velocity distribution is measured using magnetic resonance techniques by first exciting a region of interest using an RF excitation pulse simultaneously with gradient pulses along two orthogonal axes. A cyclical read-out gradient is then applied along a read-out axis and a magnetic resonance signal is continuously sampled while the read-out gradient is applied. The excitation and read-out is repeated at time intervals to obtain time varying spatially localized velocities within the region of interest.
    Type: Grant
    Filed: August 7, 1992
    Date of Patent: May 3, 1994
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Pablo Irarrazabal, Bob S. Hu, John Pauly
  • Patent number: 5250898
    Abstract: Disclosed is a method of detecting NMR signals indicative of a short T.sub.2 species in the presence of a long T.sub.2 species by utilizing magnetization transfer between species without requiring an auxiliary RF amplifier and with reduced power deposition (SAR). One or more zero degree RF pulses are applied to a body containing the short T.sub.2 species and the long T.sub.2 species with the pulses being at the resonant frequency. The RF pulses provides selective magnetization saturation of the short T.sub.2 species, and the RF pulses are spaced in time to allow magnetization transfer from the short T.sub.2 species to the long T.sub.2 species. Gradients can then be applied to the body for signal localization with signals detected from the long T.sub.2 species due to magnetization transfer from the short T.sub.2 species being indicative of the presence of the short T.sub.2 species. The signals are indicative also of the magnetization transfer between species.
    Type: Grant
    Filed: August 9, 1991
    Date of Patent: October 5, 1993
    Assignee: Board of Trustees of the Leland Stanford Junior University
    Inventors: Bob S. Hu, Steven M. Conolly