Patents by Inventor Bogdan Georgescu

Bogdan Georgescu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11557036
    Abstract: Methods and systems for image registration using an intelligent artificial agent are disclosed. In an intelligent artificial agent based registration method, a current state observation of an artificial agent is determined based on the medical images to be registered and current transformation parameters. Action-values are calculated for a plurality of actions available to the artificial agent based on the current state observation using a machine learning based model, such as a trained deep neural network (DNN). The actions correspond to predetermined adjustments of the transformation parameters. An action having a highest action-value is selected from the plurality of actions and the transformation parameters are adjusted by the predetermined adjustment corresponding to the selected action. The determining, calculating, and selecting steps are repeated for a plurality of iterations, and the medical images are registered using final transformation parameters resulting from the plurality of iterations.
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: January 17, 2023
    Assignee: Siemens Healthcare GmbH
    Inventors: Rui Liao, Shun Miao, Pierre de Tournemire, Julian Krebs, Li Zhang, Bogdan Georgescu, Sasa Grbic, Florin Cristian Ghesu, Vivek Kumar Singh, Daguang Xu, Tommaso Mansi, Ali Kamen, Dorin Comaniciu
  • Patent number: 11514571
    Abstract: Systems and methods for identifying and assessing lymph nodes are provided. Medical image data (e.g., one or more computed tomography images) of a patient is received and anatomical landmarks in the medical image data are detected. Anatomical objects are segmented from the medical image data based on the one or more detected anatomical landmarks. Lymph nodes are identified in the medical image data based on the one or more detected anatomical landmarks and the one or more segmented anatomical objects. The identified lymph nodes may be assessed by segmenting the identified lymph nodes from the medical image data and quantifying the segmented lymph nodes. The identified lymph nodes and/or the assessment of the identified lymph nodes are output.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: November 29, 2022
    Assignee: Siemens Healthcare GmbH
    Inventors: Bogdan Georgescu, Elijah D. Bolluyt, Alexandra Comaniciu, Sasa Grbic
  • Publication number: 20220293247
    Abstract: Systems and method for performing a medical imaging analysis task for making a clinical decision are provided. One or more input medical images of a patient are received. A medical imaging analysis task is performed from the one or more input medical images using a machine learning based network. The machine learning based network generates a probability score associated with the medical imaging analysis task. An uncertainty measure associated with the probability score is determined. A clinical decision is made based on the probability score and the uncertainty measure.
    Type: Application
    Filed: March 12, 2021
    Publication date: September 15, 2022
    Inventors: Eli Gibson, Bogdan Georgescu, Pascal Ceccaldi, Youngjin Yoo, Jyotipriya Das, Thomas Re, Eva Eibenberger, Andrei Chekkoury, Barbara Brehm, Thomas Flohr, Dorin Comaniciu, Pierre-Hugo Trigan
  • Patent number: 11430121
    Abstract: Systems and methods for assessing a disease are provided. Medical imaging data of lungs of a patient is received. The lungs are segmented from the medical imaging data and abnormality regions associated with a disease are segmented from the medical imaging data. An assessment of the disease is determined based on the segmented lungs and the segmented abnormality regions. The disease may be COVID-19 (coronavirus disease 2019) or diseases, such as, e.g., SARS (severe acute respiratory syndrome), MERS (Middle East respiratory syndrome), or other types of viral and non-viral pneumonia.
    Type: Grant
    Filed: April 1, 2020
    Date of Patent: August 30, 2022
    Assignee: Siemens Healthcare GmbH
    Inventors: Shikha Chaganti, Sasa Grbic, Bogdan Georgescu, Zhoubing Xu, Siqi Liu, Youngjin Yoo, Thomas Re, Guillaume Chabin, Thomas Flohr, Valentin Ziebandt, Dorin Comaniciu, Brian Teixeira, Sebastien Piat
  • Patent number: 11393229
    Abstract: Methods and systems for artificial intelligence based medical image segmentation are disclosed. In a method for autonomous artificial intelligence based medical image segmentation, a medical image of a patient is received. A current segmentation context is automatically determined based on the medical image and at least one segmentation algorithm is automatically selected from a plurality of segmentation algorithms based on the current segmentation context. A target anatomical structure is segmented in the medical image using the selected at least one segmentation algorithm.
    Type: Grant
    Filed: November 24, 2020
    Date of Patent: July 19, 2022
    Assignee: Siemens Healthcare GmbH
    Inventors: Shaohua Kevin Zhou, Mingqing Chen, Hui Ding, Bogdan Georgescu, Mehmet Akif Gulsun, Tae Soo Kim, Atilla Peter Kiraly, Xiaoguang Lu, Jin-hyeong Park, Puneet Sharma, Shanhui Sun, Daguang Xu, Zhoubing Xu, Yefeng Zheng
  • Patent number: 11304665
    Abstract: Methods for computing hemodynamic quantities include: (a) acquiring angiography data from a patient; (b) calculating a flow and/or calculating a change in pressure in a blood vessel of the patient based on the angiography data; and (c) computing the hemodynamic quantity based on the flow and/or the change in pressure. Systems for computing hemodynamic quantities and computer readable storage media are described.
    Type: Grant
    Filed: October 16, 2018
    Date of Patent: April 19, 2022
    Assignee: Siemens Healthcare GmbH
    Inventors: Puneet Sharma, Saikiran Rapaka, Xudong Zheng, Ali Kamen, Lucian Mihai Itu, Bogdan Georgescu, Dorin Comaniciu, Thomas Redel, Jan Boese, Viorel Mihalef
  • Patent number: 11284850
    Abstract: Systems and methods for a reduced interaction CT scanning workflow. A sensor is used to capture an image of a patient on the table. Scan parameters are automatically set. A full CT scan is performed without a scout scan. During the full CT scan, the scan parameters are adjusted based on the raw CT measurements from the full CT scan. A radiology report is automatically generated from the results of the full CT scan.
    Type: Grant
    Filed: March 13, 2020
    Date of Patent: March 29, 2022
    Assignee: Siemens Healthcare GmbH
    Inventors: Vivek Singh, Ankur Kapoor, Philipp Hölzer, Bogdan Georgescu
  • Publication number: 20220079552
    Abstract: For cardiac flow detection in echocardiography, by detecting one or more valves, sampling planes or flow regions spaced from the valve and/or based on multiple valves are identified. A confidence of the detection may be used to indicate confidence of calculated quantities and/or to place the sampling planes.
    Type: Application
    Filed: November 22, 2021
    Publication date: March 17, 2022
    Inventors: Huseyin Tek, Bogdan Georgescu, Tommaso Mansi, Frank Sauer, Dorin Comaniciu, Helene C. Houle, Ingmar Voigt
  • Patent number: 11275976
    Abstract: Medical images may be classified by receiving a first medical image. The medical image may be applied to a machine learned classifier. The machine learned classifier may be trained on second medical images. A label of the medical image and a measure of uncertainty may be generated. The measure of uncertainty may be compared to a threshold. The first medical image and the label may be output when the measure of uncertainty is within the threshold.
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: March 15, 2022
    Assignee: Siemens Healthcare GmbH
    Inventors: Florin-Cristian Ghesu, Eli Gibson, Bogdan Georgescu, Sasa Grbic, Dorin Comaniciu
  • Patent number: 11244453
    Abstract: Systems and method are described for determining a malignancy of a nodule. A medical image of a nodule of a patient is received. A patch surrounding the nodule is identified in the medical image. A malignancy of the nodule in the patch is predicted using a trained deep image-to-image network.
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: February 8, 2022
    Assignee: Siemens Healthcare GmbH
    Inventors: Sasa Grbic, Dorin Comaniciu, Bogdan Georgescu, Siqi Liu, Razvan Ionasec
  • Publication number: 20220028063
    Abstract: For machine learning for abnormality assessment in medical imaging and application of a machine-learned model, the machine learning uses regularization of the loss, such as regularization being used for training for abnormality classification in chest radiographs. The regularization may be a noise and/or correlation regularization directed to the noisy ground truth labels of the training data. The resulting machine-learned model may better classify abnormalities in medical images due to the use of the noise and/or correlation regularization in the training.
    Type: Application
    Filed: October 16, 2020
    Publication date: January 27, 2022
    Inventors: Sebastian Guendel, Arnaud Arindra Adiyoso, Florin-Cristian Ghesu, Sasa Grbic, Bogdan Georgescu, Dorin Comaniciu
  • Publication number: 20220028129
    Abstract: A 3D shape is reconstructed from a topogram. A generative network is machine trained. The generative network includes a topogram encoder for inputting the topogram and a decoder to output the 3D shape from the output of the encoder. For training, one or more other encoders are included, such as for input of a mask and/or input of a 3D shape as a regularlizer. The topogram encoder and decoder are trained with the other encoder or encoders outputting to the decoder. For application, the topogram encoder and decoder as trained, with or without the encoder for the mask and without the encoder for the 3D shape, are used to estimate the 3D shape for a patient from input of the topogram for that patient.
    Type: Application
    Filed: May 31, 2019
    Publication date: January 27, 2022
    Inventors: Elena Balashova, Jiangping Wang, Vivek Singh, Bogdan Georgescu
  • Publication number: 20210398654
    Abstract: Systems and methods for automatically detecting a disease in medical images are provided. Input medical images are received. A plurality of metrics for a disease is computed for each of the input medical images. The input medical images are clustered into a plurality of clusters based on one or more of the plurality of metrics to classify the input medical images. The plurality of clusters comprise a cluster of one or more of the input medical images associated with the disease and one or more clusters of one or more of the input medical images not associated with the disease. In one embodiment, the disease is COVID-19 (coronavirus disease 2019).
    Type: Application
    Filed: June 22, 2020
    Publication date: December 23, 2021
    Inventors: Shikha Chaganti, Sasa Grbic, Bogdan Georgescu, Guillaume Chabin, Thomas Re, Youngjin Yoo, Thomas Flohr, Valentin Ziebandt, Dorin Comaniciu
  • Patent number: 11185231
    Abstract: Intelligent multi-scale image parsing determines the optimal size of each observation by an artificial agent at a given point in time while searching for the anatomical landmark. The artificial agent begins searching image data with a coarse field-of-view and iteratively decreases the field-of-view to locate the anatomical landmark. After searching at a coarse field-of view, the artificial agent increases resolution to a finer field-of-view to analyze context and appearance factors to converge on the anatomical landmark. The artificial agent determines applicable context and appearance factors at each effective scale.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: November 30, 2021
    Assignee: Siemens Healthcare GmbH
    Inventors: Bogdan Georgescu, Florin Cristian Ghesu, Yefeng Zheng, Dominik Neumann, Tommaso Mansi, Dorin Comaniciu, Wen Liu, Shaohua Kevin Zhou
  • Publication number: 20210334970
    Abstract: A computer-implemented method is for classifying a lesion. In an embodiment, the method includes receiving a first medical image of an examination volume, the first medical image corresponding to a first examination time; receiving a second medical image of the examination volume, the second medical image corresponding to a second examination time, different from the first examination time; determining a first lesion area corresponding to a lesion within the first medical image; determining a registration function based on a comparison of the first medical image and the second medical image; determining a second lesion area within the second medical image based on the registration function and the first lesion area; and classifying the lesion within the first medical image based on the second lesion area. A computer-implemented method for providing a trained classification function, a classification system, and computer program products and computer-readable media are also disclosed.
    Type: Application
    Filed: April 13, 2021
    Publication date: October 28, 2021
    Inventors: Siqi LIU, Yuemeng LI, Arnaud Arindra ADIYOSO, Bogdan GEORGESCU, Sasa GRBIC, Ziming QIU, Zhengyang SHEN
  • Publication number: 20210327054
    Abstract: Systems and methods for generating a synthesized medical image are provided. An input medical image is received. A synthesized segmentation mask is generated. The input medical image is masked based on the synthesized segmentation mask. The masked input medical image has an unmasked portion and a masked portion. An initial synthesized medical image is generated using a trained machine learning based generator network. The initial synthesized medical image includes a synthesized version of the unmasked portion of the masked input medical image and synthesized patterns in the masked portion of the masked input medical image. The synthesized patterns is fused with the input medical image to generate a final synthesized medical image.
    Type: Application
    Filed: May 1, 2020
    Publication date: October 21, 2021
    Inventors: Siqi Liu, Bogdan Georgescu, Zhoubing Xu, Youngjin Yoo, Guillaume Chabin, Shikha Chaganti, Sasa Grbic, Sebastien Piat, Brian Teixeira, Thomas Re, Dorin Comaniciu
  • Publication number: 20210304408
    Abstract: Systems and methods for assessing a disease are provided. Medical imaging data of lungs of a patient is received. The lungs are segmented from the medical imaging data and abnormality regions associated with a disease are segmented from the medical imaging data. An assessment of the disease is determined based on the segmented lungs and the segmented abnormality regions. The disease may be COVID-19 (coronavirus disease 2019) or diseases, such as, e.g., SARS (severe acute respiratory syndrome), MERS (Middle East respiratory syndrome), or other types of viral and non-viral pneumonia.
    Type: Application
    Filed: April 1, 2020
    Publication date: September 30, 2021
    Inventors: Shikha Chaganti, Sasa Grbic, Bogdan Georgescu, Zhoubing Xu, Siqi Liu, Youngjin Yoo, Thomas Re, Guillaume Chabin, Thomas Flohr, Valentin Ziebandt, Dorin Comaniciu, Brian Teixeira, Sebastien Piat
  • Patent number: 11127138
    Abstract: Systems and methods are provided for evaluating an aorta of a patient. A medical image of an aorta of a patient is received. The aorta is segmented from the medical image. One or more measurement planes are identified on the segmented aorta. At least one measurement is calculated at each of the one or more measurement planes. The aorta of the patient is evaluated based on the at least one measurement calculated at each of the one or more measurement planes.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: September 21, 2021
    Assignee: Siemens Healthcare GmbH
    Inventors: Saikiran Rapaka, Mehmet Akif Gulsun, Dominik Neumann, Jonathan Sperl, Rainer Kaergel, Bogdan Georgescu, Puneet Sharma
  • Publication number: 20210282730
    Abstract: Systems and methods for a reduced interaction CT scanning workflow. A sensor is used to capture an image of a patient on the table. Scan parameters are automatically set. A full CT scan is performed without a scout scan. During the full CT scan, the scan parameters are adjusted based on the raw CT measurements from the full CT scan. A radiology report is automatically generated from the results of the full CT scan.
    Type: Application
    Filed: March 13, 2020
    Publication date: September 16, 2021
    Inventors: Vivek Singh, Ankur Kapoor, Philipp Hölzer, Bogdan Georgescu
  • Patent number: 11049223
    Abstract: Systems and methods are provided for generating a synthesized medical image patch of a nodule. An initial medical image patch and a class label associated with a nodule to be synthesized are received. The initial medical image patch has a masked portion and an unmasked portion. A synthesized medical image patch is generated using a trained generative adversarial network. The synthesized medical image patch includes the unmasked portion of the initial medical image patch and a synthesized nodule replacing the masked portion of the initial medical image patch. The synthesized nodule is synthesized according to the class label. The synthesized medical image patch is output.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: June 29, 2021
    Assignee: Siemens Healthcare GmbH
    Inventors: Jie Yang, Siqi Liu, Sasa Grbic, Arnaud Arindra Adiyoso, Zhoubing Xu, Eli Gibson, Guillaume Chabin, Bogdan Georgescu, Dorin Comaniciu