Patents by Inventor Bogdan I. Fedeles

Bogdan I. Fedeles has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180362574
    Abstract: The present invention provides compounds of Formula (I) or (II), which are thought to be able to inhibit mTOR (mammalian target of rapamycin) signaling pathway, induce UPR (unfolded protein response), and/or perturb mitochondrial function of a cyst cell (e.g., a cyst cell causing polycystic kidney disease (PKD, e.g., autosomal dominant PKD (ADPKD) or autosomal recessive PKD (ARPKD)) or polycystic liver disease (PLD, e.g., autosomal dominant PLD (ADPLD) or autosomal recessive PLD (ARPLD)). The invention also provides pharmaceutical compositions, kits, and methods involving the compounds described herein for use in treating PKD or PLD, inhibiting the growth of a cyst cell, and/or killing a cyst cell.
    Type: Application
    Filed: April 13, 2018
    Publication date: December 20, 2018
    Applicants: Massachusetts Institute of Technology, Yale University
    Inventors: Bogdan I. Fedeles, Sorin V. Fedeles, Robert G. Croy, Stefan Somlo, John M. Essigmann
  • Patent number: 9982009
    Abstract: The present invention provides compounds of Formula (I) or (II), which are thought to be able to inhibit mTOR (mammalian target of rapamycin) signaling pathway, induce UPR (unfolded protein response), and/or perturb mitochondrial function of a cyst cell (e.g., a cyst cell causing polycystic kidney disease (PKD, e.g., autosomal dominant PKD (ADPKD) or autosomal recessive PKD (ARPKD)) or polycystic liver disease (PLD, e.g., autosomal dominant PLD (ADPLD) or autosomal recessive PLD (ARPLD)). The invention also provides pharmaceutical compositions, kits, and methods involving the compounds described herein for use in treating PKD or PLD, inhibiting the growth of a cyst cell, and/or killing a cyst cell.
    Type: Grant
    Filed: October 15, 2014
    Date of Patent: May 29, 2018
    Assignees: Massachusetts Institute of Technology, Yale University
    Inventors: Bogdan I. Fedeles, Sorin V. Fedeles, Robert G. Croy, Stefan Somlo, John M. Essigmann
  • Publication number: 20170313736
    Abstract: The present disclosure provides nucleoside analogs of Formula (I) or (II). The nucleoside analogs are expected to show multiple tautomerism and may increase the mutation of an RNA and/or DNA (be mutagenic) of a virus or cancer cell. The multiple tautomerism and mutagenesis of the nucleoside analogs may be adjusted by substituting the nucleoside analogs with one or more electron-donating groups and/or electron-withdrawing groups to increase or decrease the pKa (e.g., to a pKa between 5.5 or 8.5). The present disclosure also provides pharmaceutical compositions and kits including the nucleoside analogs and methods of treating a viral infection (e.g., influenza, HIV infection, or hepatitis) or cancer using the nucleoside analogs, pharmaceutical compositions, or kits.
    Type: Application
    Filed: July 6, 2017
    Publication date: November 2, 2017
    Applicant: Massachusetts Institute of Technology
    Inventors: John M. Essigmann, Andrei Tokmakoff, Bogdan I. Fedeles, Vipender Singh, Chunte Peng
  • Patent number: 9714265
    Abstract: The present disclosure provides nucleoside analogs of Formula (I) or (II). The nucleoside analogs are expected to show multiple tautomerism and may increase the mutation of an RNA and/or DNA (be mutagenic) of a virus or cancer cell. The multiple tautomerism and mutagenesis of the nucleoside analogs may be adjusted by substituting the nucleoside analogs with one or more electron-donating groups and/or electron-withdrawing groups to increase or decrease the pKa (e.g., to a pKa between 5.5 or 8.5). The present disclosure also provides pharmaceutical compositions and kits including the nucleoside analogs and methods of treating a viral infection (e.g., influenza, HIV infection, or hepatitis) or cancer using the nucleoside analogs, pharmaceutical compositions, or kits.
    Type: Grant
    Filed: January 28, 2016
    Date of Patent: July 25, 2017
    Assignee: Massachusetts Institute of Technology
    Inventors: John M. Essigmann, Andrei Tokmakoff, Bogdan I. Fedeles, Vipender Singh, Chunte Peng
  • Publication number: 20160222050
    Abstract: The present disclosure provides nucleoside analogs of Formula (I) or (II). The nucleoside analogs are expected to show multiple tautomerism and may increase the mutation of an RNA and/or DNA (be mutagenic) of a virus or cancer cell. The multiple tautomerism and mutagenesis of the nucleoside analogs may be adjusted by substituting the nucleoside analogs with one or more electron-donating groups and/or electron-withdrawing groups to increase or decrease the pKa (e.g., to a pKa between 5.5 or 8.5). The present disclosure also provides pharmaceutical compositions and kits including the nucleoside analogs and methods of treating a viral infection (e.g., influenza, HIV infection, or hepatitis) or cancer using the nucleoside analogs, pharmaceutical compositions, or kits.
    Type: Application
    Filed: January 28, 2016
    Publication date: August 4, 2016
    Inventors: John M. Essigmann, Andrei Tokmakoff, Bogdan I. Fedeles, Vipender Singh, Chunte Peng
  • Publication number: 20150105361
    Abstract: The present invention provides compounds of Formula (I) or (II), which are thought to be able to inhibit mTOR (mammalian target of rapamycin) signaling pathway, induce UPR (unfolded protein response), and/or perturb mitochondrial function of a cyst cell (e.g., a cyst cell causing polycystic kidney disease (PKD, e.g., autosomal dominant PKD (ADPKD) or autosomal recessive PKD (ARPKD)) or polycystic liver disease (PLD, e.g., autosomal dominant PLD (ADPLD) or autosomal recessive PLD (ARPLD)). The invention also provides pharmaceutical compositions, kits, and methods involving the compounds described herein for use in treating PKD or PLD, inhibiting the growth of a cyst cell, and/or killing a cyst cell.
    Type: Application
    Filed: October 15, 2014
    Publication date: April 16, 2015
    Applicants: Massachusetts Institute of Technology, Yale University
    Inventors: Bogdan I. Fedeles, Sorin V. Fedeles, Robert G. Croy, Stefan Somlo, John M. Essigmann