Patents by Inventor Bohdana M. Discher

Bohdana M. Discher has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10900971
    Abstract: The present invention provides biomimetic sensor devices that utilize proteins—such G-protein coupled receptors—and are useful in high-sensitivity analysis of analyte-containing samples. These sensors may be used to determine the presence or concentration of one or more analytes in a sample. The invention also includes methods of fabricating the devices and methods of using the devices to assay samples.
    Type: Grant
    Filed: November 16, 2016
    Date of Patent: January 26, 2021
    Assignees: The Trustees of the University of Pennsylvania, The Board of Trustees of the University of Illinois
    Inventors: Alan T. Johnson, Jr., Brett R. Goldsmith, Joseph J. Mitala, Jr., Bohdana M. Discher, Stephen G. Sligar, Timothy H. Bayburt
  • Patent number: 7867512
    Abstract: The present invention provides biocompatible vesicles comprising semi-permeable, thin-walled encapsulating membranes which are formed in an aqueous solution, and which comprise one or more synthetic super-amphiphilic molecules. When at least one super-amphiphile molecule is a block copolymer, the resulting synthetic vesicle is termed a “polymersome.” The synthetic, reactive nature of the amphiphilic composition enables extensive, covalent cross-linking of the membrane, while maintaining semi-permeability. Cross-linking of the polymer building-block components provides mechanical control and long-term stability to the vesicle, thereby also providing a means of controlling the encapsulation or release of materials from the vesicle by modifying the composition of the membrane. Thus, the encapsulating membranes of the present invention are particularly suited for the reliable, durable and controlled transport, delivery and storage of materials.
    Type: Grant
    Filed: February 20, 2007
    Date of Patent: January 11, 2011
    Assignees: The Trustees of the University of Pennsylvania, Regents of the University of Minnesota
    Inventors: Dennis E. Discher, Bohdana M. Discher, You-Yeon Won, James C-M Lee, Daniel A. Hammer, Frank Bates
  • Patent number: 7217427
    Abstract: The present invention provides biocompatible vesicles comprising semi-permeable, thin-walled encapsulating membranes which are formed in an aqueous solution, and which comprise one or more synthetic super-amphiphilic molecules. When at least one super-amphiphile molecule is a block copolymer, the resulting synthetic vesicle is termed a “polymersome.” The synthetic, reactive nature of the amphiphilic composition enables extensive, covalent cross-linking of the membrane, while maintaining semi-permeability. Cross-linking of the polymer building-block components provides mechanical control and long-term stability to the vesicle, thereby also providing a means of controlling the encapsulation or release of materials from the vesicle by modifying the composition of the membrane. Thus, the encapsulating membranes of the present invention are particularly suited for the reliable, durable and controlled transport, delivery and storage of materials.
    Type: Grant
    Filed: July 1, 2004
    Date of Patent: May 15, 2007
    Assignees: The Trustees of the University of Pennsylvania, Regents of the University of Minnesota
    Inventors: Dennis E. Discher, Bohdana M. Discher, You-Yeon Won, James C-M Lee, Daniel A. Hammer, Frank Bates
  • Patent number: 6835394
    Abstract: The present invention provides biocompatible vesicles comprising semi-permeable, thin-walled encapsulating membranes which are formed in an aqueous solution, and which comprise one or more synthetic super-amphiphilic molecules. When at least one super-amphiphile molecule is a block copolymer, the resulting synthetic vesicle is termed a “polymersome.” The synthetic, reactive nature of the amphiphilic composition enables extensive, covalent cross-linking of the membrane, while maintaining semi-permeability. Cross-linking of the polymer building-block components provides mechanical control and long-term stability to the vesicle, thereby also providing a means of controlling the encapsulation or release of materials from the vesicle by modifying the composition of the membrane. Thus, the encapsulating membranes of the present invention are particularly suited for the reliable, durable and controlled transport, delivery and storage of materials.
    Type: Grant
    Filed: December 14, 1999
    Date of Patent: December 28, 2004
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Dennis E. Discher, Bohdana M. Discher, You-Yeon Won, James C-M. Lee, Frank S. Bates, Daniel A. Hammer