Patents by Inventor Bojidar Hadjiski

Bojidar Hadjiski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170026950
    Abstract: A mobile terminal, method and non-transitory computer-readable medium for simultaneously utilizing at least two different radio access technologies (RATs). In one embodiment, the mobile terminal includes: at least one processor configured to control and coordinate first and second radio resource control functions corresponding to first and second RATs, respectively; and map a logical channel to first and second transport channels corresponding to the first and second RATs.
    Type: Application
    Filed: July 15, 2016
    Publication date: January 26, 2017
    Inventors: Aijun CAO, Yonghong GAO, Jan JOHANSSON, Patrick SVEDMAN, Thorsten SCHIER, Bojidar HADJISKI
  • Publication number: 20160301493
    Abstract: A method of small cell discovery in a wireless network deployment using a Channel State Information Reference System (CSI-RS) is proposed. First, a wireless communication system allocates pairs of resource elements in each resource block of a subframe to a CSI-RS configuration. A first of two orthogonal cover codes is applied to the first CSI-RS. The CSI-RS is transmitted by a small cell to a user equipment (UE). The UE utilizes the CSI-RS to perform small cell discovery and measurement of the small cell.
    Type: Application
    Filed: December 11, 2014
    Publication date: October 13, 2016
    Inventors: Aijun CAO, Yonghong GAO, Thorsten SCHIER, Jan JOHANSSON, Patrick SVEDMAN, Bojidar HADJISKI
  • Publication number: 20160269990
    Abstract: A new approach to generating a probing signal by a cell in a heterogeneous network (HetNet) deployment is proposed. A small cell in the HetNet may be switched off by a base station when the small cell is not needed. The small cell is configured to alternate between an off-state and on-state. The small cell maintains the on-state for a predetermined probing period and maintains the off-state for a predetermined off period. The small cell may switch between the on-state and the off-state periodically. The small cell may be activated during a predetermined off period to transmit data to a user device.
    Type: Application
    Filed: October 31, 2014
    Publication date: September 15, 2016
    Inventors: Patrick SVEDMAN, Thorsten SCHIER, Yonghong GAO, Jan JOHANSSON, Aijun CAO, Bojidar HADJISKI
  • Publication number: 20160242105
    Abstract: The proposed approach comtemplates systems and methods configured to utilize a modified reference signal to facilitate efficient discovery of as many cells as possible within one channel state information reference signal (CSI-RS) sub-frame while maintaining certain detection and measurement performance. The proposed approach is configured to unambiguously discover at least the number of anticipated small cells within one cluster and to further identify all small cells within the coverage area of a base station/macro cell. In some embodiments, frequency multiplexing is utilized to allow different cells to transmit their discovery signals on different physical resource blocks (PRBs) rather than one cell using every PRB over the entire system bandwidth.
    Type: Application
    Filed: September 11, 2014
    Publication date: August 18, 2016
    Inventors: Thorsten SCHIER, Patrick SVEDMAN, Aijun CAO, Yonghong GAO, Jan JOHANSSON, Bojidar HADJISKI
  • Publication number: 20160234878
    Abstract: The proposed approach contemplates systems and methods configured to transmit signals irregularly (sparsely) over a mobile communication network (carrier) in which reception gaps apply while increasing the likelihood that receivers will receive a signal at least once during a certain time period, called irregular signal period. First, a set of transmission offsets is selected, the transmission offsets defining a relative transmission time in a burst, such that if a burst would be transmitted using the selected transmission offsets, a receiver with any valid reception gap configuration would receive at least one signal in its whole duration. Then, during an irregular signal period, signals are transmitted in a sequence of one or more consecutive bursts using each of the transmission offsets in the selected set at least once, wherein the sequence of bursts may be preceded and/or followed by a period of no signal transmission.
    Type: Application
    Filed: September 16, 2014
    Publication date: August 11, 2016
    Inventors: Patrick SVEDMAN, Yonghong GAO, Aijun CAO, Thorsten SCHIER, Bojidar HADJISKI, Jan JOHANSSON
  • Publication number: 20160219425
    Abstract: In a heterogeneous network deployment that includes a macro base station and one or more low power nodes, a discovery signal is transmitted to facilitate the identification of low power nodes. The discovery signal is transmitted on a selected subset of resource elements, previously unused, to maintain backward compatibility with legacy user equipment. The transmission sequence and/or the locations of resource elements used for transmitting the discovery signal can identify the low power node to a user equipment.
    Type: Application
    Filed: September 25, 2014
    Publication date: July 28, 2016
    Inventors: Thorsten Schier, Patrick Svedman, Aijun Cao, Yonghong Gao, Jan Johansson, Bojidar Hadjiski
  • Publication number: 20160218837
    Abstract: A method and system for transmitting data to user equipment (UE) is disclosed. In one embodiment, the system includes: a downlink transmitter configured to transmit a first data unit to the UE using a first transmission process assigned to the UE; an uplink receiver configured to receive a status signal indicating either a successful or unsuccessful reception of the first data unit by the UE; and a downlink scheduler, communicatively coupled to the downlink transmitter and uplink receiver, and configured to receive the status signal from the uplink receiver, wherein the downlink scheduler is further configured to schedule transmission of a second data unit to the UE and transmit a corresponding scheduling decision to the downlink transmitter prior to receiving the status signal, and wherein upon receiving the scheduling decision, the downlink transmitter transmits the second data unit to the UE using a second transmission process assigned to the UE.
    Type: Application
    Filed: March 14, 2014
    Publication date: July 28, 2016
    Inventors: Patrick SVEDMAN, Jan JOHANSSON, Thorsten SCHIER, Bojidar HADJISKI, Aijun CAO, Yonghong GAO
  • Publication number: 20160192264
    Abstract: An auxiliary cell identity (ACI) is proposed besides the conventional physical cell identity carried on the synchronization channels. The ACI is designed and configured to be transmitted in one or more primary regions and one or more secondary regions and transmitted by a base station/cell to a plurality of user equipment (UEs) located within coverage of the cell in one or more transmissions. Each of the UEs is configured to detects the transmitted ACI and identifies the cell based on the detected ACI.
    Type: Application
    Filed: July 17, 2014
    Publication date: June 30, 2016
    Inventors: Aijun CAO, Thorsten SCHIER, Yonghong GAO, Jan JOHANSSON, Patrick SVEDMAN, Bojidar HADJISKI
  • Patent number: 9363063
    Abstract: In a heterogeneous wireless network that includes a macro base station and one or more micro base stations, a wireless device to wirelessly transmit, in a first time slot at a first position in a first transmission subframe, data over a first physical communication channel. An ACK/NACK control message is received over a backhaul network connection a first time period after the first time slot. A response message is transmitted to the wireless device such that when the control message is received prior to the second time slot, then the response message uses data reception information from the control message and when the control message is not received prior to the second time slot, then the response message indicates that the data was successfully received.
    Type: Grant
    Filed: October 31, 2013
    Date of Patent: June 7, 2016
    Assignees: ZTE Wistron Telecom AB, ZTE Corporation
    Inventors: Nan Li, Thorsten Schier, Patrick Svedman, Yonghong Gao, Aijun Cao, Jan Johansson, Bojidar Hadjiski
  • Publication number: 20160157194
    Abstract: Provided is a synchronization cell used in a wireless communication system. Also provided is an SCI, synchronization cell indicator. A mobile network includes a processor that identifies one or more suitable synchronization cells for a user equipment (UE) and sends the SCI to the UE so that the UE can at least partially synchronize with a synchronization cell. The SCI advantageously includes a cell-id and other synchronization parameters and characteristics in various embodiments. The SCI may include a cell-directed UE action for the UE to carry out with a target cell. The UE carries out cell-directed UE actions with the target cell either after having obtained synchronization with the synchronization cell or to continue the synchronization process.
    Type: Application
    Filed: July 21, 2014
    Publication date: June 2, 2016
    Inventors: Patrick SVEDMAN, Thorsten SCHIER, Yonghong GAO, Jan JOHANSSON, Aijun CAO, Bojidar HADJISKI
  • Patent number: 9357528
    Abstract: In a heterogeneous network deployment that includes one or more macro base stations and one or more low power nodes, a technique can be provided to encode network operational information using phase differences in synchronization signals transmitted by a network node. The synchronization signals may be one of the first signals that a user equipment (UE) attempts to locate when attempting to join a wireless network. The phase-encoded network operational information indicates to the UE where to locate a geometry indicator transmission from a low power node that is a part of the network, but is not the node that transmits the synchronization signals. The geometry indicator transmission may include identity information for the transmitting node and may be transmitted at a pre-determined nominal transmit power.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: May 31, 2016
    Assignee: ZTE Wistron Telecom AB
    Inventors: Yonghong Gao, Aijun Cao, Jan Johansson, Patrick Svedman, Thorsten Schier, Bojidar Hadjiski
  • Publication number: 20160135146
    Abstract: A cellular telecommunications system and method of scheduling a group of user equipments is provided. The system includes a macro cell with a macro base station and multiple associated low power nodes (LPN's). The macro base station and the LPN's share the same cell ID. The system and method provide for scheduling a group of UE's by grouping a plurality of the UE's together, assigning a group identifier to the group, notifying the group and encoding a control channel with the group identifier. A single control channel is delivered to each UE in the group of UE's. The UE's of the group of UE's may be processed by different LPN's. The transmitted control channel may be included in a DCI (downlink control information) and delivers uplink scheduling grants to the UE's. Based on the transmitted control channel, the UE's are scheduled for uplink transmission.
    Type: Application
    Filed: March 13, 2014
    Publication date: May 12, 2016
    Inventors: Thorsten Schier, Patrick Svedman, Aijun Cao, Yonghong Gao, Jan Johansson, Bojidar Hadjiski
  • Publication number: 20160088495
    Abstract: In a heterogeneous network deployment that includes a macro base station and one or more low power nodes, a geometry indicator signal is transmitted to facilitate the determination of geometry or location at a user equipment. The geometry indicator, in general, is transmitted on the same or different frequency as the data signal transmission and is transmitted over a range that is same or different from that of the data signal transmission. The geometry indicator signal may be transmitted by the macro base station, the low power nodes or both.
    Type: Application
    Filed: May 7, 2014
    Publication date: March 24, 2016
    Inventors: Aijun Cao, Thorsten Schier, Jan Johansson, Yonghong Gao, Patrick Svedman, Bojidar Hadjiski
  • Patent number: 9295023
    Abstract: A heterogeneous wireless communication network includes a macrocell base station that one or more low power nodes. The location of a wireless device is estimated based on feedback reports received from the wireless device in response to downlink transmissions of a reference signal. Based on the estimated location, a schedule for future transmissions of the reference signal to the wireless device are determined. The schedule specifies a frequency of transmission of the reference signals. The schedule specifies downlink transmission antenna configuration to be used for the reference signal transmissions.
    Type: Grant
    Filed: January 14, 2014
    Date of Patent: March 22, 2016
    Assignee: ZTE Wistron Telecom AB
    Inventors: Thorsten Schier, Patrick Svedman, Aijun Cao, Yonghong Gao, Jan Johansson, Bojidar Hadjiski
  • Patent number: 9258786
    Abstract: In a heterogeneous network deployment that includes a macro base station and a low power node, a geometry indicator is transmitted by the low power node to facilitate the calculation of a path loss difference value at a user equipment using power estimates of the received synchronization signal from the macro base station and received geometry indicator signal from the low power node. Using the estimated path loss difference value, the user equipment adjusts the power level of an initial preamble signal transmission to the macro base station.
    Type: Grant
    Filed: August 29, 2013
    Date of Patent: February 9, 2016
    Assignee: ZTE Wistron Telecom AB
    Inventors: Aijun Cao, Yonghong Gao, Jan Johansson, Patrick Svedman, Thorsten Schier, Bojidar Hadjiski
  • Publication number: 20160037552
    Abstract: A system includes a downlink transmitter unit, a downlink scheduler unit, and an uplink receiver unit. At least one of the units is located at a physically separate location from others of the units, and the at least one of the units communicates with the others of the units over a backhaul. A controller that allocates a number of hybrid automatic repeat request (HARQ) processes according to any communication delays caused by the backhaul.
    Type: Application
    Filed: March 14, 2014
    Publication date: February 4, 2016
    Inventors: Patrick Svedman, Jan Johansson, Thorsten Schier, Bojidar Hadjiski, Aijun Cao, Yonghong Gao
  • Publication number: 20150333876
    Abstract: A system and method of responding to a receiver outage event, which includes: determining if a receiver outage event has occurred; if a receiver outage event has occurred, discarding soft bits that were corrupted due to the outage event; and if a received first redundancy version (RV) of coded bits corrupted by the outage event was decoded incorrectly, sending a message to a transmitter in response to the outage event, and thereafter receiving a second RV of coded bits retransmitted by the transmitter in response to the message.
    Type: Application
    Filed: December 11, 2013
    Publication date: November 19, 2015
    Inventors: Patrick SVEDMAN, Jan JOHANSSON, Thorsten SCHIER, Bojidar HADJISKI, Aijun CAO, Yonghong GAO
  • Publication number: 20150319678
    Abstract: A new approach to anti-blocking cellularcommunication for HetNet deployment is proposed. First, a block detector sends a block indicator from an LPN to a scheduler in a macro base station. The scheduler then collects the block indicator statistics of each LPN on a sub-frame basis and updates the statistics in each sub-frame. If the statistics of received block indicators for one sub-frame during an observation period of a specific LPN exceeds a first predefined threshold, then the scheduler will not schedule any more uplink transmission to the LPN during the sub-frame for those UEs which are connected to the LPN. When the statistics of received block indicators becomes less than a second predefined threshold, which is less than the first threshold, the scheduler removes the limitation on uplink transmission to the LPN and allocates the sub-frame of the LPN as usual.
    Type: Application
    Filed: December 11, 2013
    Publication date: November 5, 2015
    Applicant: ZTE WISTRON TELECOM AB
    Inventors: Jan JOHANSSON, Aijun CAO, Patrick SVEDMAN, Thorsten SCHIER, Yonghong GAO, Bojidar HADJISKI
  • Publication number: 20150296394
    Abstract: A method, system and non transitory, tangible computer readable storage medium provides for controlling the BLER (block error rate) in a digital communication system. The outer loop control of the system discounts responses sent by a receiver to data transmission from a transmitter that were sent during a receiver outage event. Either the NACKs or both the ACKs and NACKs sent by the receiver during receiver outage are discounted by the outer loop control which adapts subsequent transmissions by either directly adjusting transmission parameters or by adjusting the selection of transmission parameters. The adapting may be based on individual NACKs and ACKs or after establishing a BLER.
    Type: Application
    Filed: December 12, 2013
    Publication date: October 15, 2015
    Inventors: Patrick Svedman, Jan Johansson, Thorsten Schier, Bojidar Hadjiski, Aijun Cao, Yonghong Gao
  • Publication number: 20140200009
    Abstract: A heterogeneous wireless communication network includes a macrocell base station that one or more low power nodes. The location of a wireless device is estimated based on feedback reports received from the wireless device in response to downlink transmissions of a reference signal. Based on the estimated location, a schedule for future transmissions of the reference signal to the wireless device are determined. The schedule specifies a frequency of transmission of the reference signals. The schedule specifies downlink transmission antenna configuration to be used for the reference signal transmissions.
    Type: Application
    Filed: January 14, 2014
    Publication date: July 17, 2014
    Applicant: ZTE Wistron Telecom AB
    Inventors: Thorsten Schier, Patrick Svedman, Aijun Cao, Yonghong Gao, Jan Johansson, Bojidar Hadjiski