Patents by Inventor Bong Jun Kim

Bong Jun Kim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9157416
    Abstract: The present invention provides a direct-drive electric machine such as a generator and a motor comprising a rotor or a mover and a stator. The direct-drive electric machine is configured with a plural-module combination structure in which the rotor or the mover and the stator are mutually combined such that a plurality of modules form one phase, respectively.
    Type: Grant
    Filed: September 15, 2010
    Date of Patent: October 13, 2015
    Assignee: Korea Electrotechnology Research Institute
    Inventors: Deok Je Bang, Bong Jun Kim, Jan Abraham Ferreira, Henk Polinder
  • Patent number: 9111056
    Abstract: A fluid simulation method and apparatus is provided. The fluid simulation method according to an embodiment of the present invention comprises setting initial conditions of level set and velocity field for a simulation object and setting FLIP particles according to the set initial condition of the level set and the set initial condition of the velocity field; updating the level set and the velocity field by advection of the level set and the velocity field; reconstructing the updated level set and the updated velocity field; redeploying the FLIP particles for the simulation object; projecting the updated velocity field to have incompressibility; and updating velocity of each of the deployed particles.
    Type: Grant
    Filed: January 30, 2014
    Date of Patent: August 18, 2015
    Assignee: Dongguk University Industry-Academic Cooperation Foundation
    Inventors: Jeong-Mo Hong, Jae-Gwang Lim, Bong-Jun Kim
  • Publication number: 20150205889
    Abstract: A fluid simulation method and apparatus is provided. The fluid simulation method according to an embodiment of the present invention comprises setting initial conditions of level set and velocity field for a simulation object and setting FLIP particles according to the set initial condition of the level set and the set initial condition of the velocity field; updating the level set and the velocity field by advection of the level set and the velocity field; reconstructing the updated level set and the updated velocity field; redeploying the FLIP particles for the simulation object; projecting the updated velocity field to have incompressibility; and updating velocity of each of the deployed particles.
    Type: Application
    Filed: January 30, 2014
    Publication date: July 23, 2015
    Applicant: Dongguk University Industry-Academic Cooperation Foundation
    Inventors: Jeong-Mo Hong, Jae-Gwang Lim, Bong-Jun Kim
  • Patent number: 8890574
    Abstract: Provided are a MIT device self-heating preventive-circuit that can solve a self-heating problem of a MIT device and a method of manufacturing a MIT device self-heating preventive-circuit integrated device. The MIT device self-heating preventive-circuit includes a MIT device that generates an abrupt MIT at a temperature equal to or greater than a critical temperature and is connected to a current driving device to control the flow of current in the current driving device, a transistor that is connected to the MIT device to control the self-heating of the MIT device after generating the MIT in the MIT device, and a resistor connected to the MIT device and the transistor.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: November 18, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Hyun-Tak Kim, Bong-Jun Kim, Sun-Jin Yun, Dae-Yong Kim
  • Patent number: 8563903
    Abstract: Provided are a method and circuit for controlling heat generation of a power transistor, in which the power transistor can be protected by preventing heat generation of the power transistor by using a metal-insulator transition (MIT) device that can function as a fuse and can be semi-permanently used.
    Type: Grant
    Filed: November 11, 2008
    Date of Patent: October 22, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Hyun-Tak Kim, Yong-Wook Lee, Bong-Jun Kim, Sun-Jin Yun
  • Patent number: 8536554
    Abstract: Provided are a 3-terminal MIT switch which can easily control a discontinuous MIT jump and does not need a conventional gate insulating layer, a switching system including the 3-terminal MIT switch, and a method of controlling an MIT of the 3-terminal MIT switch. The 3-terminal MIT switch includes a 2-terminal MIT device, which generates discontinuous MIT in a transition voltage, an inlet electrode and an outlet electrode, which are respectively connected to each terminal of the 2-terminal MIT device, and a control electrode, which is connected to the inlet electrode and includes an external terminal separated from an external terminal of the inlet electrode, wherein an MIT of the 2-terminal MIT device is controlled according to a voltage or a current applied to the control electrode. The switching system includes the 3-terminal MIT switch, a voltage source connected to the inlet electrode, and a control source connected to the control electrode.
    Type: Grant
    Filed: May 7, 2008
    Date of Patent: September 17, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Hyun-Tak Kim, Yong-Wook Lee, Bong-Jun Kim, Sung-Youl Choi, Sun-Jin Yun
  • Patent number: 8502478
    Abstract: Provided are a variable field effect transistor (FET) designed to suppress a reduction of current between a source and a drain due to heat while decreasing a temperature of the FET, and an electrical and electronic apparatus including the variable gate FET. The variable gate FET includes a FET and a gate control device that is attached to a surface or a heat-generating portion of the FET and is connected to a gate terminal of the FET so as to vary a voltage of the gate terminal. A channel current between the source and drain is controlled by the gate control device that varies the voltage of the gate terminal when the temperature of the FET increases above a predetermined temperature.
    Type: Grant
    Filed: April 18, 2011
    Date of Patent: August 6, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Hyun Tak Kim, Bong Jun Kim
  • Patent number: 8330135
    Abstract: Provided are a germanium (Ge) based metal-insulator transition (MIT) thin film which is formed of a Ge single-element material instead of a compound material of two or more elements and by which material growth may be easily performed and a problem of a second phase characteristic in accordance with a structural defect and an included impurity may be solved, an MIT device including the MIT thin film, and a method of fabricating the MIT device. The MIT device includes a substrate; a germanium (Ge) based MIT thin film which is formed of a Ge single-element material on the substrate and in which a discontinuous MIT occurs at a predetermined transition voltage; and at least two thin film electrodes contacting the Ge based MIT thin film, wherein the discontinuous MIT occurs in the Ge based MIT thin film due to a voltage or a current which is applied through the thin film electrodes.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: December 11, 2012
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Sung-Youl Choi, Bong-Jun Kim, Yong-Wook Lee, Jae-Yeob Shim, Hyun-Tak Kim
  • Patent number: 8305221
    Abstract: Provided are an abrupt MIT device with variable MIT temperature or voltage, an MIT sensor using the abrupt MIT device, and an alarm apparatus and a secondary battery anti-explosion circuit including the MIT sensor. The MIT device includes an abrupt MIT layer undergoing an abrupt MIT at a transition temperature or a transition voltage and at least two electrode layers contacting the abrupt MIT layer. The transition temperature or the transition voltage varies with at least one of factors including a voltage applied to the electrode layers, a temperature, an electromagnetic wave, a pressure, and a gas concentration that affect the abrupt MIT layer. The MIT sensor is a temperature sensor, an infrared sensor, an image sensor, a pressure sensor, a gas-concentration sensor, or a switch. The alarm apparatus includes the MIT sensor and an alarm-signaling unit connected in series with the MIT sensor.
    Type: Grant
    Filed: May 30, 2007
    Date of Patent: November 6, 2012
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Hyun-Tak Kim, Bong-Jun Kim, Byung-Gyu Chae, Sun-Jin Yun, Sung-Youl Choi, Yong-Wook Lee, JungWook Lim, Sang-Kuk Choi, Kwang-Yong Kang
  • Publication number: 20120228965
    Abstract: The present invention provides a direct-drive electric machine such as a generator and a motor comprising a rotor or a mover and a stator. The direct-drive electric machine is configured with a plural-module combination structure in which the rotor or the mover and the stator are mutually combined such that a plurality of modules form one phase, respectively.
    Type: Application
    Filed: September 15, 2010
    Publication date: September 13, 2012
    Inventors: Deok Je Bang, Bong Jun Kim, Jan Abraham Ferreira, Henk Polinder
  • Patent number: 8207750
    Abstract: Provided are a circuit for continuously measuring a discontinuous metal-insulator transition (MIT) of an MIT element and an MIT sensor using the circuit. The circuit comprises a to-be-measured object unit including the MIT element having a discontinuous MIT occurring at the transition voltage thereof, a power supply unit applying a predetermined pulse current or voltage signal to the to-be-measured object unit, a measurement unit measuring the discontinuous MIT of the MIT element, and a microprocessor controlling the power supply unit and the measurement unit. The discontinuous MIT measurement circuit continuously measures the discontinuous MIT of the MIT element, and thus it can be used as a sensor for sensing a variation in an external factor.
    Type: Grant
    Filed: July 5, 2007
    Date of Patent: June 26, 2012
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Hyun-Tak Kim, Bong-Jun Kim, Yong-Wook Lee, Sun-Jin Yun, Sang-Kuk Choi
  • Publication number: 20110254613
    Abstract: Provided are a variable field effect transistor (FET) designed to suppress a reduction of current between a source and a drain due to heat while decreasing a temperature of the FET, and an electrical and electronic apparatus including the variable gate FET. The variable gate FET includes a FET and a gate control device that is attached to a surface or a heat-generating portion of the FET and is connected to a gate terminal of the FET so as to vary a voltage of the gate terminal. A channel current between the source and drain is controlled by the gate control device that varies the voltage of the gate terminal when the temperature of the FET increases above a predetermined temperature.
    Type: Application
    Filed: April 18, 2011
    Publication date: October 20, 2011
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Hyun Tak KIM, Bong Jun Kim
  • Patent number: 8031022
    Abstract: Provided are an MIT device-based oscillation circuit including a power source, an MIT device and a variable resistor, in which a generation of an oscillation and an oscillation frequency are determined according to a voltage applied from the power source and a resistance of the variable resistor, and a method of adjusting the oscillation frequency of the oscillation circuit. The MIT device includes an MIT thin film and an electrode thin film connected to the MIT thin film, and generates a discontinuous MIT at an MIT generation voltage, the variable resistor is connected in series to the MIT device, and the power source applies a voltage or an electric current to the MIT device. The generation of an oscillation and an oscillation frequency are determined according to the voltage applied from the power source and the resistance of the variable resistor.
    Type: Grant
    Filed: March 5, 2008
    Date of Patent: October 4, 2011
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Yong-Wook Lee, Bong-Jun Kim, Hyun-Tak Kim, Sung-Youl Choi, Byung-Gyu Chae, Jung-Wook Lim, Sun-Jin Yun
  • Publication number: 20110233616
    Abstract: Provided are a germanium (Ge) based metal-insulator transition (MIT) thin film which is formed of a Ge single-element material instead of a compound material of two or more elements and by which material growth may be easily performed and a problem of a second phase characteristic in accordance with a structural defect and an included impurity may be solved, an MIT device including the MIT thin film, and a method of fabricating the MIT device. The MIT device includes a substrate; a germanium (Ge) based MIT thin film which is formed of a Ge single-element material on the substrate and in which a discontinuous MIT occurs at a predetermined transition voltage; and at least two thin film electrodes contacting the Ge based MIT thin film, wherein the discontinuous MIT occurs in the Ge based MIT thin film due to a voltage or a current which is applied through the thin film electrodes.
    Type: Application
    Filed: June 20, 2008
    Publication date: September 29, 2011
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Sung-Youl Choi, Bong-Jun Kim, Yong-Wook Lee, Jae-Yeob Shim, Hyun-Tak Kim
  • Patent number: 8017268
    Abstract: Provided is a lithium secondary battery including a discharge unit capable of delaying or preventing a battery explosion. The lithium secondary battery includes a discharge unit disposed parallel to a battery body. The discharge unit includes a first electrode connected to a positive electrode of the battery body, a second electrode connected to a negative electrode of the battery body, and a discharge material film, disposed between the first electrode and the second electrode, inducing a abrupt discharge above a predetermined temperature. The discharge material film, e.g., a abrupt metal-insulator transition (MIT) material film can induce a abrupt discharge, thereby preventing or delaying a battery explosion.
    Type: Grant
    Filed: January 12, 2006
    Date of Patent: September 13, 2011
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Hyun-Tak Kim, Doo-Hyeb Youn, Byung-Gyu Chae, Kwang-Yong Kang, Bong-Jun Kim, Yong-Wook Lee, Sun-Jin Yun, Jung-Wook Lim, Gyung-Ock Kim, Sung-Lyul Maeng
  • Patent number: 7989792
    Abstract: An abrupt MIT (metal-insulator transition) device with parallel MIT material layers is provided. The abrupt MIT device includes a first electrode disposed on a certain region of a substrate, a second electrode disposed so as to be spaced a predetermined distance apart from the first electrode, and at least one MIT material layer electrically connecting the first electrode with the second electrode and having a width that allows the entire region of the MIT material layer to be transformed into a metal layer due to an MIT. Due to this configuration, deterioration of the MIT material layer, which is typically caused by current flowing through the MIT material layer, is less likely to occur.
    Type: Grant
    Filed: January 31, 2007
    Date of Patent: August 2, 2011
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Hyun-Tak Kim, Byung-Gyu Chae, Kwang-Yong Kang, Bong-Jun Kim, Yong-Wook Lee, Sun-Jin Yun
  • Patent number: 7944360
    Abstract: Provided are a temperature sensor using a metal-insulator transition (MIT) device subject to abrupt MIT at a specific temperature and an alarm including the temperature sensor. The abrupt MIT device includes an abrupt MIT thin film and at least two electrode thin films that contacts the abrupt MIT thin film. The abrupt MIT device generates abrupt metal-insulator transition at a specific transition temperature. The alarm includes a temperature sensor comprising an abrupt MIT device, and an alarm signaling device serially connected to the temperature sensor. Accordingly, the alarm can be manufactured to have a simple circuit and be of a small size by including the temperature sensor using an abrupt MIT device.
    Type: Grant
    Filed: June 27, 2006
    Date of Patent: May 17, 2011
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Hyun-Tak Kim, Kwang-Yong Kang, Yong-Wook Lee, Byung-Gyu Chae, Bong-Jun Kim, Sang-Kuk Choi, Sun-Jin Yun
  • Patent number: 7929308
    Abstract: A power device package controls heat generation of a power device using a semi-permanent metal-insulator transition (MIT) device instead of a fuse, and emits heat generated by the power device through a small-sized heat sink provided only in one region on the power device, thereby ensuring excellent dissipation of heat. Therefore, the power device package can be usefully applied to any electric/electronic circuit that uses a power device.
    Type: Grant
    Filed: August 5, 2009
    Date of Patent: April 19, 2011
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Sang Kuk Choi, Hyun Tak Kim, Byung Gyu Chae, Bong Jun Kim
  • Patent number: 7911756
    Abstract: Provided are a low-voltage noise preventing circuit using an abrupt metal-insulator transition (MIT) device which can effectively remove a noise signal with a voltage less than a rated signal voltage. The abrupt MIT device is serially connected to the electrical and/or electronic system to be protected from the noise signal, and is subject to abrupt MIT at a predetermined voltage. Accordingly, low-voltage noise can be effectively removed.
    Type: Grant
    Filed: March 7, 2006
    Date of Patent: March 22, 2011
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Hyun-Tak Kim, Kwang-Yong Kang, Byung-Gyu Chae, Bong-Jun Kim, Yong-Wook Lee, Sun-Jin Yun, Gyung-Ock Kim
  • Publication number: 20110043141
    Abstract: Provided are a MIT device self-heating preventive-circuit that can solve a self-heating problem of a MIT device and a method of manufacturing a MIT device self-heating preventive-circuit integrated device. The MIT device self-heating preventive-circuit includes a MIT device that generates an abrupt MIT at a temperature equal to or greater than a critical temperature and is connected to a current driving device to control the flow of current in the current driving device, a transistor that is connected to the MIT device to control the self-heating of the MIT device after generating the MIT in the MIT device, and a resistor connected to the MIT device and the transistor.
    Type: Application
    Filed: February 23, 2009
    Publication date: February 24, 2011
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Hyun-Tak Kim, Bong-Jun Kim, Sun-Jin Yun, Dae-Yong Kim