Patents by Inventor Bonnie L. MARLOW

Bonnie L. MARLOW has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230288465
    Abstract: A system for automatically locking a control laser in a Rydberg atomic sensor may comprise an atomic vapor cell, a probe laser configured to excite the atoms in the atomic vapor cell to an intermediate energy state, and a control laser configured to excite the one or more atoms in the atomic vapor cell from the intermediate energy state to a higher energy state. The light generated by the control laser may be dithered at a pre-determined frequency. The system further comprises a photodiode configured to convert light received from the vapor cell into an electrical signal, a lock-in amplifier configured to generate an error signal based on the electrical signal received from the photo diode and a received reference oscillation frequency, and a servo configured to receive the generated error signal from the lock-in amplifier and adjust a frequency of the control laser based on the received error signal.
    Type: Application
    Filed: March 11, 2022
    Publication date: September 14, 2023
    Applicant: The MITRE Corporation
    Inventors: Charlie FANCHER, Bonnie L. MARLOW, Kathryn NICOLICH, Kelly BACKES, Neel MALVANIA
  • Publication number: 20230231353
    Abstract: A degenerate four-wave mixing (DFWM) squeezed light apparatus includes one or more pump beams, a probe beam, a vapor cell, a repump beam, and a detector. The one or more pump beams includes an input power of no greater than about 150 mW. The vapor cell includes an atomic vapor configured to interact with overlapped pump and probe beams to generate an amplified probe beam and a conjugate beam. The repump beam is configured to optically pump the atomic vapor to a ground state and decrease atomic decoherence of the atomic vapor. The detector is configured to measure squeezing due to quantum correlations between the amplified probe beam and the conjugate beam. The one or more pump beams, the probe beam, and the repump beam are configured to generate two-mode squeezed light by DFWM with squeezing of at least 3 dB below shot noise.
    Type: Application
    Filed: March 14, 2023
    Publication date: July 20, 2023
    Inventor: BONNIE L. MARLOW
  • Patent number: 11637408
    Abstract: A degenerate four-wave mixing (DFWM) squeezed light apparatus includes one or more pump beams, a probe beam, a vapor cell, a repump beam, and a detector. The one or more pump beams includes an input power of no greater than about 150 mW. The vapor cell includes an atomic vapor configured to interact with overlapped pump and probe beams to generate an amplified probe beam and a conjugate beam. The repump beam is configured to optically pump the atomic vapor to a ground state and decrease atomic decoherence of the atomic vapor. The detector is configured to measure squeezing due to quantum correlations between the amplified probe beam and the conjugate beam. The one or more pump beams, the probe beam, and the repump beam are configured to generate two-mode squeezed light by DFWM with squeezing of at least 3 dB below shot noise.
    Type: Grant
    Filed: December 10, 2020
    Date of Patent: April 25, 2023
    Assignee: THE MITRE CORPORATION
    Inventor: Bonnie L. Marlow
  • Publication number: 20210184416
    Abstract: A degenerate four-wave mixing (DFWM) squeezed light apparatus includes one or more pump beams, a probe beam, a vapor cell, a repump beam, and a detector. The one or more pump beams includes an input power of no greater than about 150 mW. The vapor cell includes an atomic vapor configured to interact with overlapped pump and probe beams to generate an amplified probe beam and a conjugate beam. The repump beam is configured to optically pump the atomic vapor to a ground state and decrease atomic decoherence of the atomic vapor. The detector is configured to measure squeezing due to quantum correlations between the amplified probe beam and the conjugate beam. The one or more pump beams, the probe beam, and the repump beam are configured to generate two-mode squeezed light by DFWM with squeezing of at least 3 dB below shot noise.
    Type: Application
    Filed: December 10, 2020
    Publication date: June 17, 2021
    Inventor: Bonnie L. MARLOW