Patents by Inventor Boping Liu

Boping Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220056165
    Abstract: A supported three-center catalyst, a preparation method and the use are provided. The catalyst comprises a porous inorganic carrier, an organic chromium active component, an inorganic chromium active component and an inorganic vanadium active component, and may further comprise a catalyst modifying component. A method involves, by means of one or more steps of dipping and drying or dipping, drying and high-temperature roasting procedures, respectively converting an organic chromium source, a chromium source, a vanadium source and a Q component into an organic chromium active component precursor, an inorganic chromium active component precursor, an inorganic vanadium active component precursor and a catalyst modifying component that are supported on the surface of the porous inorganic carrier, and then activating same with an organometallic cocatalyst or a polymerization monomer, so as to obtain the supported three-center catalyst.
    Type: Application
    Filed: May 9, 2020
    Publication date: February 24, 2022
    Applicant: SOUTH CHINA AGRICULTURE UNIVERSITY
    Inventors: Yulong Jin, Boping Liu
  • Patent number: 10053523
    Abstract: The present invention relates to a supported polymetal olefin polymerization catalyst, comprising a porous support, a magnesium-containing support component, a transition metal titanium component supported on the porous support, and further comprising at least one non-magnesium metal component supported on the porous support. Further provided is a preparation method and a use of the supported polymetal olefin polymerization catalyst. An efficient composite support supported polymetal Ziegler-Natta catalyst is provided in the present invention, wherein a porous support, a soluble magnesium compound, and a soluble non-magnesium metal compound are used as raw materials. The supporting of titanium is achieved while a composite support containing magnesium and non-magnesium metal components is formed in situ in the surface of the porous support. The present invention has the advantage of a simple preparation method, a low cost, a controllability of morphology, properties of the catalyst, etc.
    Type: Grant
    Filed: November 25, 2015
    Date of Patent: August 21, 2018
    Assignee: East China University of Science and Technology
    Inventors: Boping Liu, Jingwen Wang, Ruihua Cheng, Xuelian He, Zhen Liu, Ning Zhao
  • Publication number: 20170349677
    Abstract: The present invention relates to a supported polymetal olefin polymerization catalyst, comprising a porous support, a magnesium-containing support component, a transition metal titanium component supported on the porous support, and further comprising at least one non-magnesium metal component supported on the porous support. Further provided is a preparation method and a use of the supported polymetal olefin polymerization catalyst. An efficient composite support supported polymetal Ziegler-Natta catalyst is provided in the present invention, wherein a porous support, a soluble magnesium compound, and a soluble non-magnesium metal compound are used as raw materials. The supporting of titanium is achieved while a composite support containing magnesium and non-magnesium metal components is formed in situ in the surface of the porous support. The present invention has the advantage of a simple preparation method, a low cost, a controllability of morphology, properties of the catalyst, etc.
    Type: Application
    Filed: November 25, 2015
    Publication date: December 7, 2017
    Inventors: Boping LIU, Jingwen WANG, Ruihua CHENG, Xuelian HE, Zhen LIU, Ning ZHAO
  • Patent number: 9725530
    Abstract: The present invention relates to a supported hybrid vanadium-chromium-based catalyst, characterized in the catalyst is supported on a porous inorganic carrier and a V active site and a inorganic Cr active site are present on the porous inorganic carrier at the same time. The present invention further relates to a process for producing a supported hybrid vanadium-chromium-based catalyst. The invention also provides the preparation method of the catalyst, titanium or fluorine compounds, vanadium salt and chromium salt according to the proportion, different methods of sequence and load on the inorganic carrier, after high temperature roasting, still can further add organic metal catalyst promoter prereduction activation treatment on it. The catalyst of the present invention can be used for producing ethylene homopolymers and ethylene/?-olefin copolymers.
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: August 8, 2017
    Assignee: EAST CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Ruihua Cheng, Boping Liu, Xin Xue, Yun He, Xuan Dong, Xuelian He, Zhen Liu, Weiwei Liu, Lisong Wang, Qiaoqiao Sun
  • Patent number: 9611339
    Abstract: The present invention relates to a carriered hybrid vanadium-chromium-based catalyst, characterized in the catalyst is carriered on a porous inorganic carrier and a V active site and an organic Cr active site are present on the porous inorganic carrier at the same time. The present invention further relates to a process for producing a carriered hybrid vanadium-chromium-based catalyst. The catalyst of the present invention can be used for producing ethylene homopolymers and ethylene/?-olefin copolymers. The hybrid vanadium-chromium-based catalyst can have high activity and produce polyethylene polymers having the properties of broad molecular weight distribution (Part of the products are bimodal distribution) and excellent ?-olefin copolymerization characteristic.
    Type: Grant
    Filed: April 15, 2013
    Date of Patent: April 4, 2017
    Assignee: EAST CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Ning Zhao, Ruihua Cheng, Xuelian He, Zhen Liu, Boping Liu
  • Publication number: 20160152738
    Abstract: A supported catalyst for olefin polymerization, a preparation method and use thereof. The catalyst comprises a porous carrier A, a magnesium-containing carrier B, and a supported active component containing a transitional metal of titanium. The catalyst is a highly efficient Ziegler-Natta titanium-based catalyst having a composite support formed by a magnesium compound and a silicon compound, wherein the raw material for the magnesium compound may be any soluble magnesium salt. The supported catalyst may be used for preparing olefin homopolymers or olefin copolymers. According to the present invention, the molecular weight, molecular weight distribution of the olefin homopolymer or olefin copolymer as well as the contents and distribution of the comonomers may be adjusted conveniently by means of changing the factors such as types and amounts of organometallic co-catalyst and molecular weight regulator.
    Type: Application
    Filed: June 20, 2014
    Publication date: June 2, 2016
    Applicant: EAST CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: WANG JINGWEN, BOPING LIU, RUIHUA CHENG, KUELIAN HE, ZHEN LIU
  • Publication number: 20150080540
    Abstract: The present invention relates to a carriered hybrid vanadium-chromium-based catalyst, characterized in the catalyst is carriered on a porous inorganic carrier and a V active site and an organic Cr active site are present on the porous inorganic carrier at the same time. The present invention further relates to a process for producing a carriered hybrid vanadium-chromium-based catalyst. The catalyst of the present invention can be used for producing ethylene homopolymers and ethylene/?-olefin copolymers. The hybrid vanadium-chromium-based catalyst can have high activity and produce polyethylene polymers having the properties of broad molecular weight distribution (Part of the products are bimodal distribution) and excellent ?-olefin copolymerization characteristic.
    Type: Application
    Filed: April 15, 2013
    Publication date: March 19, 2015
    Inventors: Ning Zhao, Ruihua Cheng, Xuelian He, Zhen Liu, Boping Liu
  • Publication number: 20150065667
    Abstract: The present invention relates to a supported hybrid vanadium-chromium-based catalyst, characterized in the catalyst is supported on a porous inorganic carrier and a V active site and a inorganic Cr active site are present on the porous inorganic carrier at the same time. The present invention further relates to a process for producing a supported hybrid vanadium-chromium-based catalyst. The invention also provides the preparation method of the catalyst, titanium or fluorine to compounds, vanadium salt and chromium salt according to the proportion, different methods of sequence and load on the inorganic carrier, after high temperature roasting, still can further add organic metal catalyst promoter prereduction activation treatment on it. The catalyst of the present invention can be used for producing ethylene homopolymers and ethylene/?-olefin copolymers.
    Type: Application
    Filed: April 19, 2013
    Publication date: March 5, 2015
    Applicant: East China University of Science and Technology
    Inventors: Ruihua Cheng, Boping Liu, Xin Xue, Yun He, Xuan Dong, Xuelian He, Zhen Liu, Weiwei Liu, Lisong Wang, Qiaoqiao Sun
  • Publication number: 20120065345
    Abstract: Disclosed are a supported hybrid chromium-based catalyst comprising a porous inorganic support, at least one inorganic oxide Cr active site (A), and at least one organic Cr active site (B), wherein the at least one inorganic oxide Cr active site (A) and the at least one organic Cr active site (B) are both supported on the porous inorganic support, processes for producing the supported hybrid chromium-based catalyst and processes for producing ethylene homopolymers and/or ethylene copolymers using the catalysts of the present disclosure.
    Type: Application
    Filed: August 12, 2011
    Publication date: March 15, 2012
    Inventors: Yan TANG, Boping Liu, Jianwen Da, Shiliang Zhang, Kan Xie, Qi Dong