Patents by Inventor Bor Z. Jang

Bor Z. Jang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11043662
    Abstract: Provided is a lithium battery cathode electrode comprising multiple particulates of a cathode active material, wherein at least a particulate is composed of one or a plurality of particles of a cathode active material being encapsulated by a thin layer of inorganic filler-reinforced elastomer having from 0.01% to 50% by weight of an inorganic filler dispersed in an elastomeric matrix material based on the total weight of the inorganic filler-reinforced elastomer, wherein the encapsulating thin layer of inorganic filler-reinforced elastomer has a thickness from 1 nm to 10 ?m, a fully recoverable tensile strain from 2% to 500%, and a lithium ion conductivity from 10?7 S/cm to 5×10?2 S/cm and the inorganic filler has a lithium intercalation potential from 1.1 V to 4.5 V (preferably 1.2-2.5 V) versus Li/Li+.
    Type: Grant
    Filed: August 22, 2018
    Date of Patent: June 22, 2021
    Assignee: Global Graphene Group, Inc.
    Inventors: Baofei Pan, Hui He, Bor Z. Jang
  • Patent number: 11043694
    Abstract: Provided is a rechargeable alkali metal-selenium cell comprising an anode active material layer, an electrolyte, and a cathode active material layer containing multiple particulates of a selenium-containing material selected from a selenium-carbon hybrid, selenium-graphite hybrid, selenium-graphene hybrid, conducting polymer-selenium hybrid, a metal selenide, a Se alloy or mixture with Sn, Sb, Bi, S, or Te, a selenium compound, or a combination thereof and wherein at least one of the particulates comprises one or a plurality of selenium-containing material particles being embraced or encapsulated by a thin layer of an elastomer having a recoverable tensile strain no less than 5% when measured without an additive or reinforcement, a lithium ion conductivity no less than 10?7 S/cm at room temperature, and a thickness from 0.5 nm to 10 ?m This battery exhibits an excellent combination of high selenium content, high selenium utilization efficiency, high energy density, and long cycle life.
    Type: Grant
    Filed: April 16, 2018
    Date of Patent: June 22, 2021
    Assignee: Global Graphene Group, Inc.
    Inventors: Aruna Zhamu, Bor Z. Jang
  • Patent number: 11038195
    Abstract: Provided is graphene-embraced particulate for use as a lithium-ion battery anode active material, wherein the particulate comprises primary particle(s) of an anode active material and multiple sheets of a first graphene material overlapped together to embrace or encapsulate the primary particle(s) and wherein a single or a plurality of graphene-encapsulated primary particles, along with an optional conductive additive, are further embraced or encapsulated by multiple sheets of a second graphene material, wherein the first graphene and the second graphene material is each in an amount from 0.01% to 20% by weight and the optional conductive additive is in an amount from 0% to 50% by weight, all based on the total weight of the particulate. Also provided are an anode and a battery comprising multiple graphene-embraced particulates.
    Type: Grant
    Filed: June 1, 2018
    Date of Patent: June 15, 2021
    Assignee: Global Graphene Group, Inc.
    Inventors: Aruna Zhamu, Jun Yin, Jen-Hsien Yang, Yu-Sheng Su, Bor Z. Jang
  • Patent number: 11038205
    Abstract: A surface-enabled, metal ion-exchanging battery device comprising a cathode, an anode, a porous separator, and a metal ion-containing electrolyte, wherein the metal ion is selected from aluminum (Al), gallium (Ga), indium (In), tin (Sn), lead (Pb), or bismuth (Bi), and at least one of the electrodes contains therein a metal ion source prior to the first charge or discharge cycle of the device and at least the cathode comprises a functional material or nano-structured material having a metal ion-capturing functional group or metal ion-storing surface in direct contact with the electrolyte. This energy storage device has a power density significantly higher than that of a lithium-ion battery and an energy density dramatically higher than that of a supercapacitor.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: June 15, 2021
    Assignee: Global Graphene Group, Inc.
    Inventors: Aruna Zhamu, Bor Z. Jang
  • Patent number: 11037693
    Abstract: A process for producing a transparent conductive film, comprising (a) providing a graphene oxide gel; (b) dispersing metal nanowires in the graphene oxide gel to form a suspension; (c) dispensing and depositing the suspension onto a substrate; and (d) removing the liquid medium to form the film. The film is composed of metal nanowires and graphene oxide with a metal nanowire-to-graphene oxide weight ratio from 1/99 to 99/1, wherein the metal nanowires contain no surface-borne metal oxide or metal compound and the film exhibits an optical transparence no less than 80% and sheet resistance no higher than 300 ohm/square. This film can be used as a transparent conductive electrode in an electro-optic device, such as a photovoltaic or solar cell, light-emitting diode, photo-detector, touch screen, electro-wetting display, liquid crystal display, plasma display, LED display, a TV screen, a computer screen, or a mobile phone screen.
    Type: Grant
    Filed: April 19, 2019
    Date of Patent: June 15, 2021
    Assignee: Global Graphene Group, Inc.
    Inventors: Yi-jun Lin, Aruna Zhamu, Bor Z. Jang
  • Patent number: 11037738
    Abstract: A graphene-enabled hybrid particulate for use as an anode active material in a hybrid supercapacitor or lithium-ion capacitor, wherein the hybrid particulate is formed of a single or a plurality of graphene sheets and a single or a plurality of fine primary particles of a niobium-containing composite metal oxide, having a size from 1 nm to 10 ?m, and the graphene sheets and the primary particles are mutually bonded or agglomerated into the hybrid particulate containing an exterior graphene sheet or multiple exterior graphene sheets embracing the primary particles, and wherein the hybrid particulate has an electrical conductivity no less than 10?4 S/cm and said graphene is in an amount of from 0.01% to 30% by weight based on the total weight of graphene and the niobium-containing composite metal oxide combined.
    Type: Grant
    Filed: February 13, 2018
    Date of Patent: June 15, 2021
    Assignee: Nanotek Instruments Group, LLC
    Inventors: Aruna Zhamu, Bor Z. Jang
  • Patent number: 11038164
    Abstract: A method of producing a pre-sulfurized active cathode layer for a rechargeable alkali metal-sulfur cell; the method comprising: (a) preparing an integral layer of mesoporous structure of a carbon, graphite, metal, or conductive polymer having a specific surface area greater than 100 m2/g; (b) preparing an electrolyte comprising a solvent and a sulfur source; (c) preparing an anode; and (d) bringing the integral layer and the anode in ionic contact with the electrolyte and imposing an electric current between the anode and the integral layer (serving as a cathode) to electrochemically deposit nanoscaled sulfur particles or coating on the graphene surfaces. The sulfur particles or coating have a thickness or diameter smaller than 20 nm (preferably <10 nm, more preferably <5 nm or even <3 nm) and occupy a weight fraction of at least 70% (preferably >90% or even >95%).
    Type: Grant
    Filed: October 8, 2019
    Date of Patent: June 15, 2021
    Assignee: Global Graphene Group, Inc.
    Inventors: Hui He, Aruna Zhamu, Bor Z. Jang
  • Patent number: 11038172
    Abstract: Provided is an impact-transfer method of producing multiple porous anode particulates for a lithium battery, the method comprising: (a) mixing multiple particles of a graphitic material, multiple composite particles comprising primary anode active material particles dispersed in or bonded by a sacrificial material, optional milling balls to form a mixture in an impacting chamber of an energy impacting apparatus; (b) operating the energy impacting apparatus for peeling off graphene sheets from the particles of graphitic material and transferring the peeled graphene sheets to surfaces of composite particles to produce particulates of graphene-encapsulated composite particles; (c) recovering the particulates from the impacting chamber; and (d) partially or completely removing the sacrificial particles from the particulates of graphene-encapsulated composite particles to obtain the multiple porous anode particulates.
    Type: Grant
    Filed: March 8, 2019
    Date of Patent: June 15, 2021
    Assignee: Global Graphene Group, Inc.
    Inventor: Bor Z. Jang
  • Patent number: 11031589
    Abstract: Provided is an anode particulate for a lithium battery, the particulate comprising a core and a thin encapsulating layer that encapsulates or embraces the core, wherein the core comprises a single or a plurality of primary particles of an anode active material, having a volume Va, dispersed or embedded in a porous carbon matrix (a carbon foam), wherein the porous carbon matrix contains pores having a pore volume Vp, and the thin encapsulating layer comprises graphene sheets and has a thickness from 1 nm to 10 ?m, an electric conductivity from 10?6 S/cm to 20,000 S/cm and a lithium ion conductivity from 10?8 S/cm to 5×10?2 S/cm and wherein the volume ratio Vp/Va is from 0.5/1.0 to 5.0/1.0. The carbon foam is preferably reinforced with a high-strength material.
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: June 8, 2021
    Assignee: Global Graphene Group, Inc.
    Inventors: Yaw Yuh Ko, Bor Z. Jang
  • Patent number: 11027252
    Abstract: Provided is a continuous reactor system for producing graphene or an inorganic 2-D compound, the reactor comprising: (a) a first body comprising an outer wall and a second body comprising an inner wall, wherein the inner wall defines a bore and the first body is configured within the bore and a motor is configured to rotate the first and/or second body; (b) a reaction chamber between the outer wall of the first body and the inner wall of the second body; (c) a first inlet and a second inlet disposed at first end of the reactor and in fluid communication with the reaction chamber; (d) a first outlet and a second outlet disposed downstream from the first inlet, the outlets being in fluid communication with the reaction chamber; and (e) a flow return conduit having two inlets/outlets in fluid communication with two ends of the reactor.
    Type: Grant
    Filed: October 16, 2019
    Date of Patent: June 8, 2021
    Assignee: Global Graphene Group, Inc.
    Inventors: Yi-jun Lin, Hsuan-Wen Lee, Aruna Zhamu, Bor Z. Jang
  • Patent number: 11021371
    Abstract: Provided is a powder mass of multiple individual hollow graphene balls, wherein at least one of the hollow graphene balls has a graphene shell composed of graphene sheets bonded by a carbon material and a hollow core enclosed by the graphene shell. These hollow graphene sheets can be used in a broad array of applications, such as for thermal management, for separating an organic solvent from a solvent-water mixture, and for separating oil from water.
    Type: Grant
    Filed: July 25, 2018
    Date of Patent: June 1, 2021
    Assignee: Global Graphene Group, Inc.
    Inventors: Aruna Zhamu, Bor Z. Jang
  • Patent number: 11024849
    Abstract: Provided is a lithium secondary battery containing an anode, a cathode, a porous separator disposed between the anode and the cathode, an electrolyte, and a lithium ion reservoir disposed between the anode and the porous separator and configured to receive lithium ions from the cathode when the battery is charged and enable the lithium ions to enter the anode in a time-delayed manner, wherein the reservoir comprises a conducting porous framework structure having pores (pore size from 1 nm to 500 ?m) and lithium-capturing groups residing in the pores, wherein the lithium-capturing groups are selected from (a) redox forming species that reversibly form a redox pair with a lithium ion; (b) electron-donating groups interspaced between non-electron-donating groups; (c) anions and cations wherein the anions are more mobile than the cations; or (d) chemical reducing groups that partially reduce lithium ions from Li+1 to Li+?, wherein 0<?<1.
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: June 1, 2021
    Assignee: Global Graphene Group, Inc.
    Inventors: Hui He, Chueh Liu, Aruna Zhamu, Bor Z. Jang
  • Patent number: 11024840
    Abstract: Provided is a rechargeable alkali metal-sulfur cell comprising an anode active material layer, a cathode active material layer, a discrete anode-protecting layer disposed between the anode active material layer and the cathode active material layer, and an electrolyte (but no porous separator), wherein the anode-protecting layer has a thickness from 1 nm to 100 ?m and comprises an elastomer having a fully recoverable tensile elastic strain from 2% to 1,000% and a lithium ion conductivity from 10?8 S/cm to 5×10?2 S/cm when measure at room temperature. The cathode layer comprises a sulfur-containing material selected from a sulfur-carbon hybrid, sulfur-graphite hybrid, sulfur-graphene hybrid, conducting polymer-sulfur hybrid, metal sulfide, sulfur compound, or a combination thereof. This battery exhibits an excellent combination of high sulfur content, high sulfur utilization efficiency, high energy density, no known dendrite issue, no dead lithium or dead sodium issue, and a long cycle life.
    Type: Grant
    Filed: January 7, 2019
    Date of Patent: June 1, 2021
    Assignee: Global Graphene Group, Inc.
    Inventor: Bor Z. Jang
  • Publication number: 20210155484
    Abstract: Provided is an anode for a lithium battery or sodium battery, the anode comprising multiple porous graphene balls and multiple particles or coating of a lithium-attracting metal or sodium-attracting metal at a graphene ball-to-metal volume ratio from 5/95 to 95/5, wherein the porous graphene ball comprises a plurality of graphene sheets forming into the ball having a diameter from 100 nm to 20 ?m and a pore or multiple pores having a pore volume fraction from 10% to 99.9% based on the total graphene ball volume, and wherein the particles or coating of lithium-attracting metal or sodium-attracting metal, having a diameter or thickness from 1 nm to 20 ?m, are selected from Au, Ag, Mg, Zn, Ti, K, Al, Fe, Mn, Co, Ni, Sn, V, Cr, an alloy thereof, or a combination thereof.
    Type: Application
    Filed: November 26, 2019
    Publication date: May 27, 2021
    Inventors: Aruna Zhamu, Hao-Hsun Chang, Bor Z. Jang
  • Patent number: 11018336
    Abstract: Provided is graphene-embraced particulate for use as a lithium-ion battery anode active material, wherein the particulate comprises primary particle(s) of an anode active material and multiple sheets of a first graphene material overlapped together to embrace or encapsulate the primary particle(s) and wherein a single or a plurality of graphene-encapsulated primary particles, along with an optional conductive additive, are further embraced or encapsulated by multiple sheets of a second graphene material, wherein the first graphene and/or the second graphene material is attached to a redox partner species (e.g. sulfonyl group, —NH2, etc.) capable of reversibly forming a redox pair with lithium. The invention also provides an anode electrode and a battery comprising multiple graphene-embraced particulates having redox forming species bonded thereto.
    Type: Grant
    Filed: June 6, 2018
    Date of Patent: May 25, 2021
    Assignee: Global Graphene Group, Inc.
    Inventors: Aruna Zhamu, Bor Z. Jang
  • Publication number: 20210151741
    Abstract: Provided is a powder mass comprising multiple metal-containing graphene balls or particulates as an anode active material for a lithium battery or sodium battery, the graphene ball or particulate comprising (a) a plurality of graphene sheets, each having a length or width from 5 nm to 100 ?m and forming into the ball or particulate having a diameter from 100 nm to 20 ?m and (b) a lithium-attracting metal or sodium-attracting metal in a form of particles or coating having a diameter or thickness from 0.5 nm to 10 ?m and in physical contact with the graphene sheets, wherein the metal is selected from Au, Ag, Mg, Zn, Ti, Na, K, Al, Fe, Mn, Co, Ni, Sn, V, Cr, an alloy thereof, or a combination thereof and is in an amount of 0.1% to 95% of the total particulate weight.
    Type: Application
    Filed: November 15, 2019
    Publication date: May 20, 2021
    Inventors: Aruna Zhamu, Hao-Hsun Chang, Bor Z. Jang
  • Publication number: 20210143409
    Abstract: A lithium- or sodium-ion battery anode layer, comprising a phosphorus material embedded in pores of a solid graphene foam composed of multiple pores and pore walls, wherein (a) the pore walls contain a pristine graphene or a non-pristine graphene material; (b) the phosphorus material contains particles or coating of P or MPy (M=transition metal and 1?y?4) and is in an amount from 20% to 99% by weight based on the total weight of the graphene foam and the phosphorus material combined, and (c) the multiple pores are lodged with particles or coating of the phosphorus material. Preferably, the solid graphene foam has a density from 0.01 to 1.7 g/cm3, a specific surface area from 50 to 2,000 m2/g, a thermal conductivity of at least 100 W/mK per unit of specific gravity, and/or an electrical conductivity no less than 1,000 S/cm per unit of specific gravity.
    Type: Application
    Filed: November 7, 2019
    Publication date: May 13, 2021
    Inventors: Aruna Zhamu, Yu-Sheng Su, Bor Z. Jang
  • Patent number: 11005094
    Abstract: Provided is a lithium battery anode electrode comprising multiple particulates of an anode active material, wherein at least a particulate is composed of one or a plurality of particles of an anode active material being encapsulated by a thin layer of inorganic filler-reinforced elastomer having from 0.01% to 50% by weight of an inorganic filler dispersed in an elastomeric matrix material based on the total weight of the inorganic filler-reinforced elastomer, wherein the encapsulating thin layer of inorganic filler-reinforced elastomer has a thickness from 1 nm to 10 ?m, a fully recoverable tensile strain from 2% to 500%, and a lithium ion conductivity from 10?7 to S/cm to 5×10?2 S/cm and the inorganic filler has a lithium intercalation potential from 1.1 V to 4.5 V (preferably 1.2-2.5 V) versus Li/Li+. The anode active material is preferably selected from Si, Ge, Sn, SnO2, SiOx, Co3O4, Mn3O4, etc.
    Type: Grant
    Filed: March 7, 2018
    Date of Patent: May 11, 2021
    Assignee: Global Graphene Group, Inc.
    Inventors: Baofei Pan, Hui He, Aruna Zhamu, Bor Z. Jang
  • Publication number: 20210135219
    Abstract: Provided is graphene-encapsulated phosphorus anode particulate for a lithium or sodium ion battery, the particulate comprising: (A) a core comprising one or a plurality of phosphorus material-decorated graphene sheets, wherein the decorated graphene sheets have a length/width from 5 nm to 100 ?m and contain single-layer or few-layer graphene and the phosphorus material is in a form of particles or coating having a diameter or thickness from 0.5 nm to 10 ?m and is selected from red phosphorus, black phosphorus (including phosphorene), violet phosphorus, a metal phosphide, MPy, or a combination thereof, wherein M=Mn, V, Sn, Ni, Cu, Fe, Co, Zn, Ge, Se, Mo, Ga, In, or an alloy thereof, and y=1-4; and (B) an encapsulating shell that embraces or encapsulates the core, wherein the encapsulating shell comprises multiple graphene sheets and have a thickness from 0.34 nm to 5 ?m.
    Type: Application
    Filed: November 4, 2019
    Publication date: May 6, 2021
    Inventors: Aruna Zhamu, Yu-Sheng Su, Bor Z. Jang
  • Publication number: 20210125741
    Abstract: Provided is a process for producing a graphene oxide platelet-filled polyimide film comprising the steps of: (a) mixing graphene oxide platelets with a polyimide precursor material and a liquid to form a slurry; (b) forming a wet film from said slurry; (c) partially or completely removing the liquid from the wet film to form a precursor polyimide composite film; and (d) imidizing the precursor polyimide composite film to approximately 90% or more completion of the crosslinking reaction, to obtain a graphene oxide platelet-filled composite film.
    Type: Application
    Filed: March 8, 2018
    Publication date: April 29, 2021
    Applicant: Nanotek Instruments, Inc.
    Inventors: Ming-Siao Hsiao, Aruna Zhamu, Bor Z. Jang