Patents by Inventor Boris Bittner

Boris Bittner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140347721
    Abstract: A film element of an EUV-transmitting wavefront correction device is arranged in a beam path and includes a first layer of first layer material having a first complex refractive index n1=(1??1)+i?1, with a first optical layer thickness, which varies locally over the used region in accordance with a first layer thickness profile, and a second layer of second layer material having a second complex refractive index n2=(1??2)+i?2, with a second optical layer thickness, which varies locally over the used region in accordance with a second layer thickness profile. The first and second layer thickness profiles differ. The deviation ?1 of the real part of the first refractive index from 1 is large relative to the absorption coefficient ?1 of the first layer material and the deviation ?2 of the real part of the second refractive index from 1 is small relative to the absorption coefficient ?2 of the second layer material.
    Type: Application
    Filed: August 8, 2014
    Publication date: November 27, 2014
    Inventors: Boris Bittner, Norbert Wabra, Sonja Schneider, Ricarda Schneider, Hendrik Wagner, Christian Wald, Rumen Iliew, Thomas Schicketanz, Toralf Gruner, Walter Pauls, Holger Schmidt
  • Publication number: 20140327892
    Abstract: A projection objective of a microlithographic projection exposure apparatus has a wavefront correction device comprising a first refractive optical element and a second refractive optical element. The first refractive optical element comprises a first optical material having, for an operating wavelength of the apparatus, an index of refraction that decreases with increasing temperature. The second refractive optical element comprises a second optical material having, for an operating wavelength of the apparatus, an index of refraction that increases with increasing temperature. In a correction mode of the correction device, a first heating device produces a non-uniform and variable first temperature distribution in the first optical material, and a second heating device produces a non-uniform and variable second temperature distribution in the second optical material.
    Type: Application
    Filed: July 10, 2014
    Publication date: November 6, 2014
    Inventors: Holger Walter, Boris Bittner
  • Publication number: 20140307308
    Abstract: A reflective optical element 39 for EUV wavelengths having a layer arrangement on the surface of a substrate, wherein the layer arrangement includes at least one layer subsystem 37 consisting of a periodic sequence of at least one period of individual layers. The period includes two individual layers having different refractive indices in the EUV wavelength range. The substrate has a variation of the density of more than 1% by volume at least along an imaginary surface 30 at a fixed distance of between 0 ?m and 100 ?m from the surface. Also, the substrate is protected against long-term aging or densification by EUV radiation either with a protective layer, with a protective layer subsystem of the layer arrangement, or with a correspondingly densified surface region 35 of the substrate.
    Type: Application
    Filed: April 7, 2014
    Publication date: October 16, 2014
    Applicant: Carl Zeiss SMT GmbH
    Inventors: Markus WEISS, Norbert KERWIEN, Martin WEISER, Boris BITTNER, Norbert WABRA, Christoph SCHLICHENMAIER, Wilfried CLAUSS
  • Publication number: 20140239192
    Abstract: An illumination and displacement device for a projection exposure apparatus comprises an illumination optical unit for illuminating an illumination field. An object holder serves for mounting an object in such a way that at least one part of the object can be arranged in the illumination field. An object holder drive serves for displacing the object during illumination in an object displacement direction. A correction device serves for the spatially resolved influencing of an intensity of the illumination at least of sections of the illumination field, wherein there is a spatial resolution of the influencing of the intensity of the illumination of the illumination field at least along the object displacement direction. This results in an illumination and displacement device in which field-dependent imaging aberrations which are present during the projection exposure do not undesirably affect a projection result.
    Type: Application
    Filed: May 8, 2014
    Publication date: August 28, 2014
    Inventors: Sonja Schneider, Norbert Wabra, Martin von Hodenberg, Boris Bittner, Ricarda Schneider
  • Publication number: 20140185024
    Abstract: A projection objective of a microlithographic projection exposure apparatus comprises a wavefront correction device comprising a refractive optical element that has two opposite optical surfaces, through which projection light passes, and a circumferential rim surface extending between the two optical surfaces. A first and a second optical system are configured to direct first and second heating light to different portions of the rim surface such that at least a portion of the first and second heating light enters the refractive optical element. A temperature distribution caused by a partial absorption of the heating light results in a refractive index distribution inside the refractive optical element that corrects a wavefront error. At least the first optical system comprises a focusing optical element that focuses the first heating light in a focal area such that the first heating light emerging from the focal area impinges on the rim surface.
    Type: Application
    Filed: March 6, 2014
    Publication date: July 3, 2014
    Inventors: Johannes Zellner, Boris Bittner, Norbert Wabra, Martin von Hodenberg, Sonja Schneider, Ricarda Schneider, Arne Schob, Guenter Rudolph, Alexander Gratzke, Bryce Anton Moffat
  • Publication number: 20140176924
    Abstract: A projection exposure apparatus for microlithography includes: an illumination system configured to illuminate a mask in an object field with exposure light; and a projection objective comprising multiple optical elements configured to image the exposure light from the mask in the object field to a wafer in an image field. The projection exposure apparatus is a wafer scanner configured to move the wafer relative to the mask during an exposure of the wafer with the exposure light. The projection objective further includes at least one manipulator configured to manipulate at least one of the optical elements and a control unit configured to control the manipulator. The control unit is configured to manipulate the optical element with the manipulator during the exposure of the wafer with the exposure light.
    Type: Application
    Filed: March 3, 2014
    Publication date: June 26, 2014
    Inventors: Boris Bittner, Holger Walter, Matthias Roesch
  • Publication number: 20140104587
    Abstract: A projection arrangement for imaging lithographic structure information comprises: an optical element, which has at least partly a coating composed of an electrically conductive layer material. The coating comprises a continuous region, which has no elements that shade projection light. In this case, the layer material and/or the optical element change(s) an optical property, in particular a refractive index or an optical path length, depending on a temperature change. At least one mechanism for coupling energy into the layer material is provided, which couples in energy in such a way that the layer material converts coupled-in energy into thermal energy. The layer material may comprise graphene, chromium and/or molybdenum sulfide (MoS2).
    Type: Application
    Filed: November 21, 2013
    Publication date: April 17, 2014
    Inventors: Rolf Freimann, Boris Bittner
  • Publication number: 20140078482
    Abstract: Projection objectives, such as projection objectives of lithography projection exposure apparatuses, as well as related systems, components and methods, such as methods of revising and/or repairing such objectives, are disclosed.
    Type: Application
    Filed: November 7, 2013
    Publication date: March 20, 2014
    Applicant: Carl Zeiss SMT GmbH
    Inventors: Olaf Rogalsky, Boris Bittner, Thomas Petasch, Jochen Haeussler
  • Patent number: 8659744
    Abstract: A method for correcting at least one image defect of a projection objective of a lithography projection exposure machine, the projection objective comprising an optical arrangement composed of a plurality of lenses and at least one mirror, the at least one mirror having an optically operative surface that can be defective and is thus responsible for the at least one image defect, comprises the steps of: at least approximately determining a ratio VM of principal ray height hMH to marginal ray height hMR at the optically operative surface of the at least one mirror, at least approximately determining at least one optically operative lens surface among the lens surfaces of the lenses, at which the magnitude of a ratio VL of principal ray height hLH to marginal ray height hLR comes at least closest to the ratio VM, and selecting the at least one determined lens surface for the correction of the image defect.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: February 25, 2014
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Wilhelm Ulrich, Thomas Okon, Norbert Wabra, Toralf Gruner, Boris Bittner, Volker Graeschus
  • Patent number: 8605253
    Abstract: Projection objectives, related systems and components, and methods are disclosed. The methods include providing a projection objective of a lithography projection exposure apparatus, where the projection objective includes a plurality of optical elements between an object plane of the projection objective and an image plane of the projection objective, and the plurality of optical elements includes a first optical element having a refractive power and being disposed in the projection objective at a first location. The methods also include removing the first optical element from the projection objective, and inserting a first spare optical element into the projection objective at the first location, where the removing and inserting steps are performed at a location of use of the lithography projection exposure apparatus in a lithography process.
    Type: Grant
    Filed: December 15, 2008
    Date of Patent: December 10, 2013
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Olaf Rogalsky, Boris Bittner, Thomas Petasch, Jochen Haeussler
  • Publication number: 20130258302
    Abstract: A projection exposure apparatus for microlithography includes a projection lens which includes a plurality of optical elements for imaging mask structures onto a substrate during an exposure process. The projection exposure apparatus also includes at least one manipulator configured to change, as part of a manipulator actuation, the optical effects of at least one of the optical elements within the projection lens by changing a state variable of the optical element along a predetermined travel. The projection exposure apparatus further includes an algorithm generator configured to generate a travel generating optimization algorithm, adapted to at least one predetermined imaging parameter, on the basis of the at least one predetermined imaging parameter.
    Type: Application
    Filed: March 8, 2013
    Publication date: October 3, 2013
    Inventors: Boris Bittner, Norbert Wabra, Martin von Hodenberg
  • Publication number: 20130250266
    Abstract: Method for operating a projection exposure apparatus for microlithography, the projection exposure apparatus comprising an optical element, a manipulator, which acts on the optical element by changing the temperature of the optical element and the deflection of which brings about a heat flow caused by the manipulator into the optical element. The history of the effects, in particular the temperatures introduced into the optical element or the optical effects caused thereby, of the manipulator are recorded in a record.
    Type: Application
    Filed: March 26, 2013
    Publication date: September 26, 2013
    Inventor: Boris Bittner
  • Publication number: 20130070221
    Abstract: A microlithographic projection exposure apparatus includes a projection light source, a heating light source, a catoptric projection lens and a reflecting switching element, which can be arranged outside of the projection lens and can be displaced between a first position and a second position via a drive. Only the projection light can enter the projection lens in the first position of the switching element, and only the heating light can enter the projection lens in the second position of the switching element.
    Type: Application
    Filed: September 13, 2012
    Publication date: March 21, 2013
    Applicant: CARL ZEISS SMT GMBH
    Inventors: Boris Bittner, Norbert Wabra
  • Publication number: 20120188636
    Abstract: A method for correcting at least one image defect of a projection objective of a lithography projection exposure machine, the projection objective comprising an optical arrangement composed of a plurality of lenses and at least one mirror, the at least one mirror having an optically operative surface that can be defective and is thus responsible for the at least one image defect, comprises the steps of: at least approximately determining a ratio VM of principal ray height hMH to marginal ray height hMR at the optically operative surface of the at least one mirror, at least approximately determining at least one optically operative lens surface among the lens surfaces of the lenses, at which the magnitude of a ratio VL of principal ray height hLH to marginal ray height hLR comes at least closest to the ratio VM, and selecting the at least one determined lens surface for the correction of the image defect.
    Type: Application
    Filed: April 5, 2012
    Publication date: July 26, 2012
    Applicant: Carl Zeiss SMT GmbH
    Inventors: Wilhelm Ulrich, Thomas Okon, Norbert Wabra, Toralf Gruner, Boris Bittner, Volker Graeschus
  • Publication number: 20120188524
    Abstract: A microlithography projection objective includes an optical element, a manipulator configured to manipulate the optical element, and a control unit configured to control the manipulator. The control unit includes a first device configured to control movement of the manipulator, a memory comprising an upper bound for a range of movement of the manipulator, and a second device configured to generate a merit function based on a square of a root mean square (RMS) of at least one error and configured to minimize the merit function subordinate to the upper bound for the range of movement of the manipulator.
    Type: Application
    Filed: March 22, 2012
    Publication date: July 26, 2012
    Applicant: CARL ZEISS SMT GMBH
    Inventors: Boris Bittner, Holger Walter, Matthias Roesch
  • Patent number: 8203696
    Abstract: A projection apparatus for microlithography for imaging an object field includes an objective, one or a plurality of manipulators for manipulating one or a plurality of optical elements of the objective, a control unit for regulating or controlling the one or the plurality of manipulators, a determining device for determining at least one or a plurality of image aberrations of the objective, a memory comprising upper bounds for one or a plurality of specifications of the objective, including upper bounds for image aberrations and/or movements for the manipulators, wherein when determining an overshooting of one of the upper bounds by one of the image aberrations and/or an overshooting of one of the upper bounds by one of the manipulator movements by regulation or control of at least one manipulator within at most 30000 ms, or 10000 ms, or 5000 ms, or 1000 ms, or 200 ms, or 20 ms, or 5 ms, or 1 ms, an undershooting of the upper bounds can be effected.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: June 19, 2012
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Boris Bittner, Holger Walter, Matthias Roesch
  • Patent number: 8174676
    Abstract: A method for correcting at least one image defect of a projection objective of a lithography projection exposure machine, the projection objective comprising an optical arrangement composed of a plurality of lenses and at least one mirror, the at least one mirror having an optically operative surface that can be defective and is thus responsible for the at least one image defect, comprises the steps of: at least approximately determining a ratio VM of principal ray height hMH to marginal ray height hMR at the optically operative surface of the at least one mirror, at least approximately determining at least one optically operative lens surface among the lens surfaces of the lenses, at which the magnitude of a ratio VL of principal ray height hLH to marginal ray height hLR comes at least closest to the ratio VM, and selecting the at least one determined lens surface for the correction of the image defect.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: May 8, 2012
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Wilhelm Ulrich, Thomas Okon, Norbert Wabra, Toralf Gruner, Boris Bittner, Volker Graeschus
  • Publication number: 20110279803
    Abstract: A method for correcting at least one image defect of a projection objective of a lithography projection exposure machine, the projection objective comprising an optical arrangement composed of a plurality of lenses and at least one mirror, the at least one mirror having an optically operative surface that can be defective and is thus responsible for the at least one image defect, comprises the steps of: at least approximately determining a ratio VM of principal ray height hMH to marginal ray height hMR at the optically operative surface of the at least one mirror, at least approximately determining at least one optically operative lens surface among the lens surfaces of the lenses, at which the magnitude of a ratio VL of principal ray height hLH to marginal ray height hLR comes at least closest to the ratio VM, and selecting the at least one determined lens surface for the correction of the image defect.
    Type: Application
    Filed: July 20, 2011
    Publication date: November 17, 2011
    Applicant: CARL ZEISS SMT GMBH
    Inventors: Wilhelm Ulrich, Thomas Okon, Norbert Wabra, Toralf Gruner, Boris Bittner, Volker Graeschus
  • Patent number: 7990622
    Abstract: A projection objective of a microlithographic projection exposure apparatus comprises a manipulator for reducing rotationally asymmetric image errors. The manipulator in turn contains a lens, an optical element and an interspace formed between the lens and the optical element, which can be filled with a liquid. At least one actuator acting exclusively on the lens is furthermore provided, which can generate a rotationally asymmetric deformation of the lens.
    Type: Grant
    Filed: October 1, 2010
    Date of Patent: August 2, 2011
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Olaf Conradi, Boris Bittner, Sascha Bleidistel, Markus Hauf, Wolfgang Hummel, Arif Kazi, Baerbel Schwaer, Jochen Weber, Hubert Holderer, Payam Tayebati
  • Publication number: 20110181855
    Abstract: A projection apparatus for microlithography for imaging an object field includes an objective, one or a plurality of manipulators for manipulating one or a plurality of optical elements of the objective, a control unit for regulating or controlling the one or the plurality of manipulators, a determining device for determining at least one or a plurality of image aberrations of the objective, a memory comprising upper bounds for one or a plurality of specifications of the objective, including upper bounds for image aberrations and/or movements for the manipulators, wherein when determining an overshooting of one of the upper bounds by one of the image aberrations and/or an overshooting of one of the upper bounds by one of the manipulator movements by regulation or control of at least one manipulator within at most 30000 ms, or 10000 ms, or 5000 ms, or 1000 ms, or 200 ms, or 20 ms, or 5 ms, or 1 ms, an undershooting of the upper bounds can be effected.
    Type: Application
    Filed: March 23, 2011
    Publication date: July 28, 2011
    Applicant: CARL ZEISS SMT GMBH
    Inventors: Boris Bittner, Holger Walter, Matthias Roesch