Patents by Inventor Boris Golovanevsky
Boris Golovanevsky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10897566Abstract: Focusing methods and modules are provided for metrology tools and systems. Methods comprise capturing image(s) of at least two layers of a ROI in an imaging target, binning the captured image(s), deriving a focus shift from the binned captured image(s) by comparing the layers, and calculating a focus position from the derived focus shift. Disclosed methods are direct, may be carried out in parallel to a part of the overlay measurement process and provide fast and simple focus measurements that improve metrology performance.Type: GrantFiled: August 25, 2017Date of Patent: January 19, 2021Assignee: KLA-Tencor CorporationInventors: Nadav Gutman, Boris Golovanevsky, Noam Gluzer
-
Patent number: 10755016Abstract: Metrology overlay targets are provided, as well as method of monitoring process shortcomings. Targets comprise periodic structures, at least one of which comprising repeating asymmetric elements along a corresponding segmentation direction of the periodic structure. The asymmetry of the elements may be designed in different ways, for example as repeating asymmetric sub-elements along a direction perpendicular to the segmentation direction of the elements. The asymmetry of the sub-elements may be designed in different ways, according to the type of monitored process shortcomings, such as various types of hot spots, line edge shortening, process windows parameters and so forth. Results of the measurements may be used to improve the process and/or increase the accuracy of the metrology measurements.Type: GrantFiled: June 4, 2019Date of Patent: August 25, 2020Assignee: KLA-Tencor CorporationInventor: Boris Golovanevsky
-
Publication number: 20190286781Abstract: Metrology overlay targets are provided, as well as method of monitoring process shortcomings. Targets comprise periodic structures, at least one of which comprising repeating asymmetric elements along a corresponding segmentation direction of the periodic structure. The asymmetry of the elements may be designed in different ways, for example as repeating asymmetric sub-elements along a direction perpendicular to the segmentation direction of the elements. The asymmetry of the sub-elements may be designed in different ways, according to the type of monitored process shortcomings, such as various types of hot spots, line edge shortening, process windows parameters and so forth. Results of the measurements may be used to improve the process and/or increase the accuracy of the metrology measurements.Type: ApplicationFiled: June 4, 2019Publication date: September 19, 2019Inventor: Boris Golovanevsky
-
Patent number: 10354035Abstract: Metrology overlay targets are provided, as well as method of monitoring process shortcomings. Targets comprise periodic structures, at least one of which comprising repeating asymmetric elements along a corresponding segmentation direction of the periodic structure. The asymmetry of the elements may be designed in different ways, for example as repeating asymmetric sub-elements along a direction perpendicular to the segmentation direction of the elements. The asymmetry of the sub-elements may be designed in different ways, according to the type of monitored process shortcomings, such as various types of hot spots, line edge shortening, process windows parameters and so forth. Results of the measurements may be used to improve the process and/or increase the accuracy of the metrology measurements.Type: GrantFiled: January 6, 2017Date of Patent: July 16, 2019Assignee: KLA-Tencor CorporationInventor: Boris Golovanevsky
-
Publication number: 20190208108Abstract: Focusing methods and modules are provided for metrology tools and systems. Methods comprise capturing image(s) of at least two layers of a ROI in an imaging target, binning the captured image(s), deriving a focus shift from the binned captured image(s) by comparing the layers, and calculating a focus position from the derived focus shift. Disclosed methods are direct, may be carried out in parallel to a part of the overlay measurement process and provide fast and simple focus measurements that improve metrology performance.Type: ApplicationFiled: August 25, 2017Publication date: July 4, 2019Applicant: KLA-Tencor CorporationInventors: Nadav GUTMAN, Boris GOLOVANEVSKY, Noam GLUZER
-
Publication number: 20180232478Abstract: Metrology overlay targets are provided, as well as method of monitoring process shortcomings. Targets comprise periodic structures, at least one of which comprising repeating asymmetric elements along a corresponding segmentation direction of the periodic structure. The asymmetry of the elements may be designed in different ways, for example as repeating asymmetric sub-elements along a direction perpendicular to the segmentation direction of the elements. The asymmetry of the sub-elements may be designed in different ways, according to the type of monitored process shortcomings, such as various types of hot spots, line edge shortening, process windows parameters and so forth. Results of the measurements may be used to improve the process and/or increase the accuracy of the metrology measurements.Type: ApplicationFiled: January 6, 2017Publication date: August 16, 2018Inventor: Boris Golovanevsky
-
Patent number: 9970886Abstract: Metrology tool stage configurations and respective methods are provided, which comprise a pivoted connection arranged to receive a wafer and enable rotation thereof about a pivot; a radial axis arranged to radially move the rotatable pivoted connection attached thereto; and optics having a stationary part configured to generate a collimated illumination beam. For example, the optics may be stationary and the radial axis may be centrally rotated to enable stage operation without requiring additional space for guiding systems. In another example, a part of the optics may be rotatable, when configured to receive illumination via a mechanically decoupled or empty region, receive power and control wirelessly and deliver data wirelessly. The disclosed configurations provide more compact and more robust stages which efficiently handle large wafers. Stage configurations may be horizontal or vertical, the latter further minimizing the tool's footprint.Type: GrantFiled: December 12, 2014Date of Patent: May 15, 2018Inventor: Boris Golovanevsky
-
Patent number: 9581430Abstract: Systems and methods are provided which derive target characteristics from interferometry images taken at multiple phase differences between target beams and reference beams yielding the interferometry images. The illumination of the target and the reference has a coherence length of less than 30 microns to enable scanning the phase through the coherence length of the illumination. The interferometry images are taken at the pupil plane and/or in the field plane to combine angular and spectroscopic scatterometry data that characterize and correct target topography and enhance the performance of metrology systems.Type: GrantFiled: October 18, 2013Date of Patent: February 28, 2017Assignee: KLA-Tencor CorporationInventors: Amnon Manassen, Ohad Bachar, Daria Negri, Boris Golovanevsky, Barak Bringoltz, Daniel Kandel, Yoel Feler, Noam Sapiens, Paykin Irina, Alexander Svizher, Meir Aloni, Guy Ben Dov, Hadar Shalmoni, Vladimir Levinski
-
Patent number: 9546946Abstract: Metrology tools are provided, which comprise both active and passive vibration isolation devices, passive or active isolation systems such as constrained layer dampers, particle impact dampers or liquid impact dampers, and/or noise cancellation transducers, combined in different supporting structures of the metrology tool to dampen and reduce vibrations at a wide range of frequencies and intensities, and to which frequency range spectral analysis and optimization may be applied to determine specific tool configurations according to the provided principles.Type: GrantFiled: March 28, 2014Date of Patent: January 17, 2017Assignee: KLA-Tencor CorporationInventors: Boris Golovanevsky, Noam Sapiens
-
Publication number: 20150233814Abstract: Metrology tools are provided, which comprise both active and passive vibration isolation devices, passive or active isolation systems such as constrained layer dampers, particle impact dampers or liquid impact dampers, and/or noise cancellation transducers, combined in different supporting structures of the metrology tool to dampen and reduce vibrations at a wide range of frequencies and intensities, and to which frequency range spectral analysis and optimization may be applied to determine specific tool configurations according to the provided principles.Type: ApplicationFiled: March 28, 2014Publication date: August 20, 2015Inventors: Boris Golovanevsky, Noam Sapiens
-
Publication number: 20150098081Abstract: Metrology tool stage configurations and respective methods are provided, which comprise a pivoted connection arranged to receive a wafer and enable rotation thereof about a pivot; a radial axis arranged to radially move the rotatable pivoted connection attached thereto; and optics having a stationary part configured to generate a collimated illumination beam. For example, the optics may be stationary and the radial axis may be centrally rotated to enable stage operation without requiring additional space for guiding systems. In another example, a part of the optics may be rotatable, when configured to receive illumination via a mechanically decoupled or empty region, receive power and control wirelessly and deliver data wirelessly. The disclosed configurations provide more compact and more robust stages which efficiently handle large wafers. Stage configurations may be horizontal or vertical, the latter further minimizing the tool's footprint.Type: ApplicationFiled: December 12, 2014Publication date: April 9, 2015Inventor: Boris Golovanevsky
-
Patent number: 8908175Abstract: A scatterometry tool including an illumination source for directing a light beam into a first optical beam shaping and positioning element at an illumination pupil plane of the tool where the light beam is modulated and directed to an objective lens system having a high numerical aperture. The objective receiving the modulated light beam and directing it onto a target to generate a scattering signal. The objective lens collects the scattering signal and directs it to a second optical beam shaping and positioning element at a collection pupil plane where the signal is modulated and then directed to detectors for receiving and processing the signal to determine surface characteristics of the target.Type: GrantFiled: September 13, 2006Date of Patent: December 9, 2014Assignee: KLA-Tencor CorporationInventors: Daniel Kandel, Michael Adel, Joel Seligson, Boris Golovanevsky
-
Patent number: 8804111Abstract: In one embodiment, a surface inspection system comprises a radiation source that emits a broadband radiation beam, a radiation directing assembly to target radiation onto a surface of an object, the radiation directing assembly comprising a radiation collection assembly to collect radiation reflected from the surface of the object, the radiation collection assembly comprising at least one multi-chip detector array assembly positioned within a field of view of the inspection system.Type: GrantFiled: October 2, 2008Date of Patent: August 12, 2014Assignee: KLA-Tencor CorporationInventor: Boris Golovanevsky
-
Publication number: 20140111791Abstract: Systems and methods are provided which derive target characteristics from interferometry images taken at multiple phase differences between target beams and reference beams yielding the interferometry images. The illumination of the target and the reference has a coherence length of less than 30 microns to enable scanning the phase through the coherence length of the illumination. The interferometry images are taken at the pupil plane and/or in the field plane to combine angular and spectroscopic scatterometry data that characterize and correct target topography and enhance the performance of metrology systems.Type: ApplicationFiled: October 18, 2013Publication date: April 24, 2014Inventors: Amnon Manassen, Ohad Bachar, Daria Negri, Boris Golovanevsky, Barak Bringoltz, Daniel Kandel, Yoel Feler, Noam Sapiens, Paykin Irina, Alexander Svizher, Meir Aloni, Guy Ben Dov, Hadar Shalmoni, Vladimir Levinski
-
Patent number: 7933016Abstract: Disclosed are techniques, apparatus, and targets for determining overlay error between two layers of a sample. A plurality of targets is provided. Each target includes a portion of the first and second structures and each is designed to have an offset between its first and second structure portions. The targets are illuminated with electromagnetic radiation to thereby obtain spectra from each target at a ?1st diffraction order and a +1st diffraction order.Type: GrantFiled: December 18, 2009Date of Patent: April 26, 2011Assignee: KLA-Tencor Technologies CorporationInventors: Walter D. Mieher, Ady Levy, Boris Golovanevsky, Michael Friedmann, Ian Smith, Michael Adel, Anatoly Fabrikant, Christopher F. Bevis, John Fielden, Noah Bareket, Kenneth P. Gross, Piotr Zalicki, Dan Wack, Paola Dececco, Thaddeus G. Dziura, Mark Ghinovker
-
Patent number: 7804994Abstract: An overlay method for determining the overlay error of a device structure formed during semiconductor processing is disclosed. The overlay method includes producing calibration data that contains overlay information relating the overlay error of a first target at a first location to the overlay error of a second target at a second location for a given set of process conditions. The overlay method also includes producing production data that contains overlay information associated with a production target formed with the device structure. The overlay method further includes correcting the overlay error of the production target based on the calibration data.Type: GrantFiled: February 13, 2003Date of Patent: September 28, 2010Assignee: KLA-Tencor Technologies CorporationInventors: Michael Adel, Mark Ghinovker, Elyakim Kassel, Boris Golovanevsky, John C. Robinson, Chris A. Mack, Jorge Poplawski, Pavel Izikson, Moshe Preil
-
Publication number: 20100091284Abstract: Disclosed are techniques, apparatus, and targets for determining overlay error between two layers of a sample. A plurality of targets is provided. Each target includes a portion of the first and second structures and each is designed to have an offset between its first and second structure portions. The targets are illuminated with electromagnetic radiation to thereby obtain spectra from each target at a ?1st diffraction order and a +1st diffraction order.Type: ApplicationFiled: December 18, 2009Publication date: April 15, 2010Applicant: KLA-TENCOR TECHNOLOGIES CORPORATIONInventors: Walter D. Mieher, Ady Levy, Boris Golovanevsky, Michael Friedmann, Ian Smith, Michael Adel, Anatoly Fabrikant, Christopher F. Bevis, John Fielden, Noah Bareket, Kenneth P. Gross, Piotr Zalicki, Dan Wack, Paola Dececco, Thaddeus G. Dziura, Mark Ghinovker
-
Patent number: 7663753Abstract: Disclosed are techniques, apparatus, and targets for determining overlay error between two layers of a sample. Target A is designed to have an offset Xa between its first and second structures portions; target B is designed to have an offset Xb; target C is designed to have an offset Xc; and target D is designed to have an offset Xd. Each of the offsets Xa, Xb, Xc and Xd is preferably different from zero; Xa is an opposite sign and differ from Xb; and Xc is an opposite sign and differs from Xd. The targets A, B, C and D are illuminated with electromagnetic radiation to obtain spectra SA, SB, SC, and SD from targets A, B, C, and D, respectively. Any overlay error between the first structures and the second structures is then determined using a linear approximation based on the obtained spectra SA, SB, SC, and SD.Type: GrantFiled: December 21, 2007Date of Patent: February 16, 2010Assignee: KLA-Tencor Technologies CorporationInventors: Walter D. Mieher, Ady Levy, Boris Golovanevsky, Michael Friedmann, Ian Smith, Michael Adel, Anatoly Fabrikant, Christopher F. Bevis, John Fielden, Noah Bareket, Ken Gross, Piotr Zalicki, Dan Wack, Paola Dececco, Thaddeus G. Dziura, Mark Ghinovker
-
Patent number: 7616313Abstract: Embodiments of the invention include a scatterometry target for use in determining the alignment between substrate layers. A target arrangement is formed on a substrate and comprises a plurality of target cells. Each cell has two layers of periodic features constructed such that an upper layer is arranged above a lower layer and configured so that the periodic features of the upper layer have an offset and/or different pitch than periodic features of the lower layer. The pitches are arranged to generate a periodic signal when the target is exposed to an illumination source. The target also includes disambiguation features arranged between the cells and configured to resolve ambiguities caused by the periodic signals generated by the cells when exposed to the illumination source.Type: GrantFiled: September 21, 2006Date of Patent: November 10, 2009Assignee: KLA-Tencor Technologies CorporationInventors: Daniel Kandel, Walter D. Mieher, Boris Golovanevsky
-
Publication number: 20090091751Abstract: In one embodiment, a surface inspection system comprises a radiation source that emits a broadband radiation beam, a radiation directing assembly to target radiation onto a surface of an object, the radiation directing assembly comprising a radiation collection assembly to collect radiation reflected from the surface of the object, the radiation collection assembly comprising at least one multi-chip detector array assembly positioned within a field of view of the inspection system.Type: ApplicationFiled: October 2, 2008Publication date: April 9, 2009Inventor: Boris Golovanevsky