Patents by Inventor Boris Kabisher

Boris Kabisher has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11780346
    Abstract: A computer-implemented method for scheduling pre-departure charging for electric vehicles includes predicting a user-departure time based on a first machine learning prediction model. The method further includes determining a cabin temperature to be set for the user at the user-departure time based on a second machine learning prediction model. The method further includes determining a battery-temperature to be set at the user-departure time based on a third machine learning prediction model. The method further includes determining a present charge level of a battery of the electric vehicle. The method further includes computing a charging start-time to start charging the battery based on one or more attributes of a charging station to which the electric vehicle is coupled, and based on the user-departure time, the cabin temperature, and the battery-temperature. The method further includes initiating charging the battery at the charging start-time.
    Type: Grant
    Filed: March 29, 2021
    Date of Patent: October 10, 2023
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Ariel Telpaz, Barak Hershkovitz, Nadav Baron, Ravid Erez, Boris Kabisher, Omer Zerbib
  • Publication number: 20220318859
    Abstract: A system includes a memory device, and one or more processors for detection, characterization, and presentation of charging stations for electric vehicles. The processors determine that a charging station is an undocumented charging station; a documented charging station is one that is part of a dataset of known charging stations. A confidence score is computed to indicate whether the charging station is a public charging station. In response to the confidence score being greater than a first predetermined threshold, the undocumented charging station is documented as a public charging station. In response to the confidence score being lesser than the first predetermined threshold and greater than a second predetermined threshold, the undocumented charging station is added to a list of charging stations to investigate. In response to the confidence score being lesser than the second predetermined threshold, the undocumented charging station is documented as a private charging station.
    Type: Application
    Filed: March 29, 2021
    Publication date: October 6, 2022
    Inventors: Ariel Telpaz, Barak Hershkovitz, Nadav Baron, Ravid Erez, Boris Kabisher, Omer Zerbib
  • Publication number: 20220305941
    Abstract: A computer-implemented method for scheduling pre-departure charging for electric vehicles includes predicting a user-departure time based on a first machine learning prediction model. The method further includes determining a cabin temperature to be set for the user at the user-departure time based on a second machine learning prediction model. The method further includes determining a battery-temperature to be set at the user-departure time based on a third machine learning prediction model. The method further includes determining a present charge level of a battery of the electric vehicle. The method further includes computing a charging start-time to start charging the battery based on one or more attributes of a charging station to which the electric vehicle is coupled, and based on the user-departure time, the cabin temperature, and the battery-temperature. The method further includes initiating charging the battery at the charging start-time.
    Type: Application
    Filed: March 29, 2021
    Publication date: September 29, 2022
    Inventors: Ariel Telpaz, Barak Hershkovitz, Nadav Baron, Ravid Erez, Boris Kabisher, Omer Zerbib
  • Publication number: 20100094496
    Abstract: A system and method for managing energy usage in an electric vehicle. A charge level of at least one battery of the electric vehicle is received. A current location of the electric vehicle is received. A theoretical maximum range of the electric vehicle is determined based on the current location of the electric vehicle and the charge level of the at least one battery of the electric vehicle.
    Type: Application
    Filed: September 15, 2009
    Publication date: April 15, 2010
    Inventors: Barak Hershkovitz, Yuval Gilboa, Tamir Khason, Boris Kabisher, Shahaf Kieslestein, Shai Agassi