Patents by Inventor Boris Kobrin

Boris Kobrin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060201425
    Abstract: We have devised an apparatus useful for and a method of removing impurities from vaporous precursor compositions used to generate reactive precursor vapors from which thin films/layers are formed under sub-atmospheric conditions. The method is particularly useful when the layer deposition apparatus provides for precise addition of quantities of different combinations of reactants during a single step or when there are a number of different individual steps in the layer formation process, where the presence of impurities has a significant affect on both the quantity of reactants being charged and the overall composition of the reactant mixture from which the layer is deposited. The method is particularly useful when the vapor pressure of a liquid reactive precursor is less than about 250 Torr at atmospheric pressure.
    Type: Application
    Filed: March 8, 2005
    Publication date: September 14, 2006
    Inventors: Boris Kobrin, Romuald Nowak, Jeffrey Chinn, Richard Yi
  • Publication number: 20060088666
    Abstract: We have developed an improved vapor-phase deposition method and apparatus for the application of layers and coatings on various substrates. The method and apparatus are useful in the fabrication of biofunctional devices, Bio-MEMS devices, and in the fabrication of microfluidic devices for biological applications. In one important embodiment, a siloxane substrate surface is treated using a combination of ozone and UV radiation to render the siloxane surface more hydrophilic, and subsequently a functional coating is applied in-situ over the treated surface of the siloxane substrate.
    Type: Application
    Filed: December 5, 2005
    Publication date: April 27, 2006
    Applicant: APPLIED MICROSTRUCTURES, INC.
    Inventors: Boris Kobrin, Jeffrey Chinn, Romuald Nowak
  • Publication number: 20060049826
    Abstract: An optical cross-connect switch comprises a base (216), a flap (211) and one or more electrically conductive landing pads (222) connected to the flap (211). The flap (211) has a bottom portion that is movably coupled to the base (216) such that the flap (211) is movable with respect to a plane of the base (216) from a first orientation to a second orientation. The one or more landing pads (222) are electrically isolated from the flap (211) and electrically coupled to be equipotential with a landing surface.
    Type: Application
    Filed: March 1, 2002
    Publication date: March 9, 2006
    Applicants: ONIX MICROSYSTEMS, ANALOG DEVICES, INC.
    Inventors: Michael Daneman, Franklin Wall, Behrang Behin, Murali Chaparala, Mark Chang, Scott Dalton, Timothy Beerling, Stephen Panyko, Meng-Hsiung Kiang, Boris Kobrin, Chuang-Chia Lin
  • Publication number: 20060029732
    Abstract: We have developed an improved vapor-phase deposition method and apparatus for the application of organic films/coatings containing a variety of functional groups on substrates. Most substrates can be coated using the method of the invention. The substrate surface is halogenated using a vaporous halogen-containing compound, followed by a reaction with at least one organic molecule containing at least one nucleophilic functional group capable of reacting with a halogenated substrate surface. The halogenation of the substrate surface and the subsequent reaction with the organic molecule nucleophilic functional group are carried out in the same process chamber in a manner such that the halogenated substrate surface does not lose its functionality prior to reaction with the nucleophilic functional group(s) on the organic molecule. Typically the process chamber is operated under a pressure ranging from about 1 mTorr to about 10 Torr.
    Type: Application
    Filed: August 4, 2004
    Publication date: February 9, 2006
    Inventors: Boris Kobrin, William Ashurst, Jeffrey Chinn, Romuald Nowak
  • Publication number: 20050271809
    Abstract: We have developed an improved vapor-phase deposition method and apparatus for the application of films/coatings on substrates. The method provides for the addition of a precise amount of each of the reactants to be consumed in a single reaction step of the coating formation process. In addition to the control over the amount of reactants added to the process chamber, the present invention requires precise control over the total pressure (which is less than atmospheric pressure) in the process chamber, the partial vapor pressure of each vaporous component present in the process chamber, the substrate temperature, and typically the temperature of a major processing surface within said process chamber. Control over this combination of variables determines a number of the characteristics of a film/coating or multi-layered film/coating formed using the method. By varying these process parameters, the roughness and the thickness of the films/coatings produced can be controlled.
    Type: Application
    Filed: June 4, 2004
    Publication date: December 8, 2005
    Inventors: Boris Kobrin, Romuald Nowak, Richard Yi, Jeffrey Chinn
  • Publication number: 20050271810
    Abstract: We have developed an improved vapor-phase deposition method and apparatus for the application of layers and coatings on various substrates. The method and apparatus are useful in the fabrication of biotechnologically functional devices, Bio-MEMS devices, and in the fabrication of microfluidic devices for biological applications. In one important embodiment, oxide coatings providing hydrophilicity or oxide/polyethylene glycol coatings providing hydrophilicity can be deposited by the present method, over the interior surfaces of small wells in a plastic micro-plate in order to increase the hydrophilicity of these wells. Filling these channels with a precise amount of liquid consistently can be very difficult. This prevents a water-based sample from beading up and creating bubbles, so that well can fill accurately and completely, and alleviates spillage into other wells which causes contamination.
    Type: Application
    Filed: January 31, 2005
    Publication date: December 8, 2005
    Inventors: Boris Kobrin, Jeffrey Chinn, Romuald Nowak, Richard Yi
  • Publication number: 20050271893
    Abstract: An improved vapor-phase deposition method and apparatus for the application of multilayered films/coatings on substrates is described. The method is used to deposit multilayered coatings where the thickness of an oxide-based layer in direct contact with a substrate is controlled as a function of the chemical composition of the substrate, whereby a subsequently deposited layer bonds better to the oxide-based layer. The improved method is used to deposit multilayered coatings where an oxide-based layer is deposited directly over a substrate and a SAM organic-based layer is directly deposited over the oxide-based layer. Typically a series of alternating layers of oxide-based layer and organic-based layer are applied.
    Type: Application
    Filed: November 23, 2004
    Publication date: December 8, 2005
    Inventors: Boris Kobrin, Jeffrey Chinn, Romuald Nowak, Richard Yi
  • Publication number: 20050271900
    Abstract: An improved vapor-phase deposition method and apparatus for the application of multilayered films/coatings on substrates is described. The method is used to deposit multilayered coatings where the thickness of an oxide-based layer in direct contact with a substrate is controlled as a function of the chemical composition of the substrate, whereby a subsequently deposited layer bonds better to the oxide-based layer. The improved method is used to deposit multilayered coatings where an oxide-based layer is deposited directly over a substrate and an organic-based layer is directly deposited over the oxide-based layer. Typically, a series of alternating layers of oxide-based layer and organic-based layer are applied.
    Type: Application
    Filed: April 21, 2005
    Publication date: December 8, 2005
    Inventors: Boris Kobrin, Jeffrey Chinn, Romuald Nowak, Richard Yi
  • Publication number: 20050109277
    Abstract: A vapor phase deposition method and apparatus for the application of thin layers and coatings on substrates. The method and apparatus are useful in the fabrication of electronic devices, micro-electromechanical systems (MEMS), Bio-MEMS devices, micro and nano imprinting lithography, and microfluidic devices. The apparatus used to carry out the method provides for the addition of a precise amount of each of the reactants to be consumed in a single reaction step of the coating formation process. The apparatus provides for precise addition of quantities of different combinations of reactants during a single step or when there are a number of different individual steps in the coating formation process. The precise addition of each of the reactants in vapor form is metered into a predetermined set volume at a specified temperature to a specified pressure, to provide a highly accurate amount of reactant.
    Type: Application
    Filed: December 21, 2004
    Publication date: May 26, 2005
    Inventors: Boris Kobrin, Romuald Nowak, Richard Yi, Jeffrey Chinn
  • Patent number: 6888979
    Abstract: A microelectromechanical (MEMS) apparatus has a base and a flap with a portion coupled to the base so that the flap may move out of the plane of the base between first and second position. The base may have a cavity with largely vertical sidewalls that contact a portion of the flap when the flap is in the second position Electrodes may be placed on the vertical sidewalls and electrically isolated from the base to provide electrostatic clamping of the flap to the sidewall. The base may be made from a substrate portion of a silicon-on-insulator (SOI) wafer and the flap defined from a device layer of the SOI wafer. The flap may be connected to the base by one or more flexures such as torsional beams. An array of one or more of such structures may be used to form an optical switch.
    Type: Grant
    Filed: April 12, 2001
    Date of Patent: May 3, 2005
    Assignee: Analog Devices, Inc.
    Inventors: Behrang Behin, Michael J. Daneman, Chuang-Chia Lin, Boris Kobrin, Murali Chaparala, Gary Zalewski
  • Publication number: 20040261703
    Abstract: A vapor phase deposition method and apparatus for the application of thin layers and coatings on substrates. The method and apparatus are useful in the fabrication of electronic devices, micro-electromechanical systems (MEMS), Bio-MEMS devices, micro and nano imprinting lithography, and microfluidic devices. The apparatus used to carry out the method provides for the addition of a precise amount of each of the reactants to be consumed in a single reaction step of the coating formation process. The apparatus provides for precise addition of quantities of different combinations of reactants during a single step or when there are a number of different individual steps in the coating formation process. The precise addition of each of the reactants in vapor form is metered into a predetermined set volume at a specified temperature to a specified pressure, to provide a highly accurate amount of reactant.
    Type: Application
    Filed: January 17, 2004
    Publication date: December 30, 2004
    Applicants: Jeffrey D. Chinn, Romuald Nowak
    Inventors: Boris Kobrin, Romuald Nowak, Richard C. Yi, Jeffrey D. Chinn
  • Patent number: 6547975
    Abstract: A method and apparatus for fabricating a submicrometer structure. The method incorporates a sputtering process to deposit an electromagnetic material from a seedlayer onto a vertical sidewall. The vertical sidewall is subsequently removed, leaving a free-standing pole-tip. The resulting structure formed can have a a width of less than 0.3 micrometers, if desired. This structure can be used as a magnetic pole of a thin film head (“TFH”) for a data storage device.
    Type: Grant
    Filed: October 26, 2000
    Date of Patent: April 15, 2003
    Assignee: Unaxis USA Inc.
    Inventor: Boris Kobrin
  • Patent number: 6540928
    Abstract: A method and apparatus for fabricating an electroplating mask for the formation of a miniature magnetic pole tip structure. The method incorporates a silylation process to silylate photoresist after creating a photoresist cavity or trench in the electroplating mask. The silylation process is performed after a dry etch of the photoresist. Alternatively, silylation is performed after a lithographic patterning of the trench. As a result of chemical biasing, the vertical side walls of the photoresist layer shift inward creating a narrower trench. The resulting structure formed after electroplating has a width of less than 0.3 micrometers. This structure can be used as a magnetic pole of a thin film head (“TFH”) for a data storage device.
    Type: Grant
    Filed: September 8, 2000
    Date of Patent: April 1, 2003
    Assignee: Unaxis USA Inc.
    Inventors: Boris Kobrin, Edward Ostan
  • Publication number: 20020076140
    Abstract: A gas pulse is used to actuate the movable part (e.g. a rotatable mirror) of a MEMS device. The MEMS device generally comprises a substrate and one or more movable elements coupled to the substrate and means for pneumatic actuation of at least one of the one or more movable elements. The MEMS device may be in the form of an NXN optical crossbar switch. Pneumatic actuation eliminates the need for magnetic pads and electromagnets along with the disadvantages associated with MEMS devices having these components. Such pneumatic actuation may be incorporated into a MEMS optical switch having a substrate and one or more rotatable mirrors coupled for rotation with respect to the substrate.
    Type: Application
    Filed: November 6, 2001
    Publication date: June 20, 2002
    Applicant: Onix Microsystems, Inc.
    Inventor: Boris Kobrin
  • Publication number: 20020076139
    Abstract: An acoustic pulse is used to actuate the movable part of a MEMS device. The MEMS device generally comprises a substrate one or more movable elements coupled to the substrate and means for acoustic pulse actuation of at least one of the one or more movable elements. The MEMS device may be in the form of an optical switch having one or more mirrors rotatably attached to a substrate. Acoustic pulse actuation eliminates the need for magnetic pads and electromagnets along with the disadvantages associated with MEMS devices having these components. Furthermore, the acoustic pulse actuation may take place in a liquid environment, which reduces problems with stiction and improves the reliability of the device.
    Type: Application
    Filed: November 6, 2001
    Publication date: June 20, 2002
    Inventor: Boris Kobrin
  • Publication number: 20020064337
    Abstract: A microelectromechanical (MEMS) apparatus has a base and a flap with a portion coupled to the base so that the flap may move out of the plane of the base between first and second position. The base may have a cavity with largely vertical sidewalls that contact a portion of the flap when the flap is in the second position Electrodes may be placed on the vertical sidewalls and electrically isolated from the base to provide electrostatic clamping of the flap to the sidewall. The base may be made from a substrate portion of a silicon-on-insulator (SOI) wafer and the flap defined from a device layer of the SOI wafer. The flap may be connected to the base by one or more flexures such as torsional beams. An array of one or more of such structures may be used to form an optical switch.
    Type: Application
    Filed: April 12, 2001
    Publication date: May 30, 2002
    Inventors: Behrang Behin, Michael J. Daneman, Chuang-Chia Lin, Boris Kobrin, Murali Chaparala, Gary Zalewski
  • Publication number: 20020046985
    Abstract: A microelectromechanical (MEMS) apparatus has a base and a flap with a portion coupled to the base may be fabricated by an inventive process. The process generally involves etching one or more trenches in a backside of a base, e.g., by anisotropic etch. The trench may be etched such that an orientation of a sidewall is defined by a crystal orientation of the base material. A layer of insulating material is formed on one or more sidewalls of one or more of the trenches. A conductive layer is formed on the layer of insulating material on one or more sidewalls of one or more of the trenches. The conductive layer may completely fill up the trench between the insulating materials on the sidewalls to provide the isolated electrode. Base material is removed from a portion of the base bordered by the one or more trenches to form a cavity in the base. The trench etch may stop on an etch-stop layer so that the cavity does not form all the way through the base.
    Type: Application
    Filed: April 13, 2001
    Publication date: April 25, 2002
    Inventors: Michael J. Daneman, Chuang-Chia Lin, Boris Kobrin
  • Patent number: 6087655
    Abstract: Very long linear large diameter rotational, and arbitrary shape conformal fiber encoders are suggested. These devices are based on detection of non-zeroth diffraction order or interference pattern of selected diffraction orders from the fiber grating. Relative and absolute position detection or movement detection can be realized. Depending on the variety of disclosed configurations of fiber encoders, fiber grating could be either a fiber Bragg grating (refractive index modulation grating), a fiber surface-relief phase grating, or fiber amplitude or amplitude phase grating. Each of these fiber gratings may have a uniform or chirped period, and the fiber grating encoders may be implemented using transmission, reflection, or Bragg angle reflection schemes. An optical fiber may be manufactured on a continuous basis by drawing it from preform. Consequently, there is really no limitation to the length of the linear fiber based encoders.
    Type: Grant
    Filed: May 19, 1998
    Date of Patent: July 11, 2000
    Inventor: Boris Kobrin