Patents by Inventor Boris Sverdlov

Boris Sverdlov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8831062
    Abstract: A semiconductor laser diode comprises a semiconductor body having an n-region and a p-region laterally spaced apart within the semiconductor body. The laser diode is provided with an active region between the n-region and the p-region having a front end and a back end section, an n-metallization layer located adjacent the n-region and having a first injector for injecting current into the active region, and a p-metallization layer opposite to the n-metallization layer and adjacent the p-region and having a second injector for injecting current into the active region. The thickness and/or width of at least one metallization layer is chosen so as to control the current injection in a part of the active region near at least one end of the active region compared to the current injection in another part of the active region. The width of the at least one metallization layer is larger than a width of the active region.
    Type: Grant
    Filed: April 6, 2011
    Date of Patent: September 9, 2014
    Assignee: II-VI Laser Enterprise GmbH
    Inventors: Hans-Ulrich Pfeiffer, Andrew Cannon Carter, Jörg Troger, Norbert Lichtenstein, Michael Schwarz, Abram Jakubowicz, Boris Sverdlov
  • Patent number: 8526103
    Abstract: A laser device having a semiconductor gain element optically coupled to an optical fiber by using an angled anamorphic fiber lens and including a wavelength-selective front reflector. The laser device possesses improved output characteristics such as a highly linear laser emission output, even when the amplification section produces a high amount of gain. Such a laser source can also be used in various applications such as pump lasers for fiber amplifiers or frequency doubling systems.
    Type: Grant
    Filed: August 19, 2010
    Date of Patent: September 3, 2013
    Assignee: Oclaro Technology Limited
    Inventors: Stefan Mohrdiek, Evgeny Zibik, Hans Ulrich Pfeiffer, Boris Sverdlov
  • Publication number: 20130070800
    Abstract: A semiconductor laser diode comprises a semiconductor body having an n-region and a p-region laterally spaced apart within the semiconductor body. The laser diode is provided with an active region between the n-region and the p-region having a front end and a back end section, an n-metallisation layer located adjacent the n-region and having a first injector for injecting current into the active region, and a p-metallisation layer opposite to the n-metallisation layer and adjacent the p-region and having a second injector for injecting current into the active region. The thickness and/or width of at least one metallisation layer is chosen so as to control the current injection in a part of the active region near at least one end of the active region compared to the current injection in another part of the active region. The width of the at least one metallisation layer is larger than a width of the active region.
    Type: Application
    Filed: April 6, 2011
    Publication date: March 21, 2013
    Inventors: Hans-Ulrich Pfeiffer, Andrew Cannon Carter, Jörg Troger, Norbert Lichtenstein, Michael Schwarz, Abram Jakubowicz, Boris Sverdlov
  • Publication number: 20110292496
    Abstract: A laser device having a semiconductor gain element optically coupled to an optical fiber by using an angled anamorphic fiber lens and including a wavelength-selective front reflector. The laser device possesses improved output characteristics such as a highly linear laser emission output, even when the amplification section produces a high amount of gain. Such a laser source can also be used in various applications such as pump lasers for fiber amplifiers or frequency doubling systems.
    Type: Application
    Filed: August 19, 2010
    Publication date: December 1, 2011
    Inventors: Stefan Mohrdiek, Evgeny Zibik, Hans Ulrich Pfeiffer, Boris Sverdlov
  • Patent number: 7623555
    Abstract: Semiconductor laser diodes, particularly high power ridge waveguide laser diodes, are often used in opto-electronics as so-called pump laser diodes for fiber amplifiers in optical communication lines. To provide the desired high power output and stability of such a laser diode and avoid degradation during use, the present invention concerns an improved design of such a device, the improvement concerns a method of suppressing the undesired first and higher order modes of the laser which consume energy and do not contribute to the optical output of the laser, thus reducing it's efficiency. This novel effect is provided by a structure comprising CIG—for Complex Index Guiding—elements on top of the laser diode, said CIG being established by fabricating CIG elements consisting of one or a plurality of layers and containing at least one layer which provides the optical absorption of undesired modes of the lasing wavelength.
    Type: Grant
    Filed: January 10, 2008
    Date of Patent: November 24, 2009
    Assignee: Oclaro Technology plc
    Inventors: Silke Traut, Berthold Schmidt, Boris Sverdlov, Achim Thies
  • Publication number: 20080123697
    Abstract: Semiconductor laser diodes, particularly high power ridge waveguide laser diodes, are often used in opto-electronics as so-called pump laser diodes for fiber amplifiers in optical communication lines. To provide the desired high power output and stability of such a laser diode and avoid degradation during use, the present invention concerns an improved design of such a device, the improvement concerns a method of suppressing the undesired first and higher order modes of the laser which consume energy and do not contribute to the optical output of the laser, thus reducing it's efficiency. This novel effect is provided by a structure comprising CIG—for Complex Index Guiding—elements on top of the laser diode, said CIG being established by fabricating CIG elements consisting of one or a plurality of layers and containing at least one layer which provides the optical absorption of undesired modes of the lasing wavelength.
    Type: Application
    Filed: January 10, 2008
    Publication date: May 29, 2008
    Inventors: Silke TRAUT, Berthold Schmidt, Boris Sverdlov, Achim Thies
  • Publication number: 20050201438
    Abstract: Semiconductor laser diodes, particularly high power ridge waveguide laser diodes, are often used in opto-electronics as so-called pump laser diodes for fiber amplifiers in optical communication lines. To provide the desired high power output and stability of such a laser diode and avoid degradation during use, the present invention concerns an improved design of such a device, the improvement concerns a method of suppressing the undesired first and higher order modes of the laser which consume energy and do not contribute to the optical output of the laser, thus reducing it's efficiency. This novel effect is provided by a structure comprising CIG—for Complex Index Guiding—elements on top of the laser diode, said CIG being established by fabricating CIG elements consisting of one or a plurality of layers and containing at least one layer which provides the optical absorption of undesired modes of the lasing wavelength.
    Type: Application
    Filed: January 21, 2005
    Publication date: September 15, 2005
    Inventors: Silke Traut, Berthold Schmidt, Boris Sverdlov, Achim Thies
  • Patent number: 6862300
    Abstract: Semiconductor laser diodes, particularly high power ridge waveguide laser diodes, are often used in opto-electronics as so-called pump laser diodes for fiber amplifiers in optical communication lines. To provide the desired high power output and stability of such a laser diode and avoid degradation during use, the present invention concerns an improved design of such a device, the improvement in particular consisting in a way of suppressing the undesired first and higher order modes of the laser which consume energy and do not contribute to the optical output of the laser, thus reducing it's efficiency. Essentially, the novel effect is provided by a structure comprising CIG—for Complex Index Guiding—elements on top of the laser diode. These CIG elements consist of one or a plurality of layers and must contain at least one layer which provides the optical absorption of undesired modes of the lasing wavelength and preferably contains an insulating layer as a first contact layer to the semiconductor.
    Type: Grant
    Filed: September 17, 2002
    Date of Patent: March 1, 2005
    Assignee: Bookham Technology plc
    Inventors: Silke Traut, Berthold Schmidt, Boris Sverdlov, Achim Thies
  • Patent number: 6819702
    Abstract: A pump laser diode for providing improved stability at various operating temperatures is disclosed. It includes a Fabry-Perot cavity formed by laser facets. Bragg Gratings or Fiber Bragg Gratings (FBG) in a pump module are provided, wherein the optical mirror losses are made to increase for wavelengths longer than the required emission wavelength, thus permitting the diode to be locked to an emission wavelength while operating at different temperatures. A stack of materials with different refractive indices is deposited on the back facet of the laser diode to achieve a change in optical mirror losses over longer wavelengths.
    Type: Grant
    Filed: September 11, 2002
    Date of Patent: November 16, 2004
    Assignee: Bookham Technology plc
    Inventors: Boris Sverdlov, Berthold Schmidt
  • Publication number: 20040047390
    Abstract: A pump laser diode for providing improved stability at various operating temperatures is disclosed. It includes a Fabry-Perot cavity formed by laser facets. Bragg Gratings or Fiber Bragg Gratings (FBG) in a pump module are provided, wherein the optical mirror losses are made to increase for wavelengths longer than the required emission wavelength, thus permitting the diode to be locked to an emission wavelength while operating at different temperatures. A stack of materials with different refractive indices is deposited on the back facet of the laser diode to achieve a change in optical mirror losses over longer wavelengths.
    Type: Application
    Filed: September 11, 2002
    Publication date: March 11, 2004
    Inventors: Boris Sverdlov, Berthold Schmidt
  • Patent number: 5795395
    Abstract: An apparatus and method for decorating a cake. A print head is provided that moves in a planar or linear domain and that dispenses edible colorant at positions corresponding to the pixels of a digital image. The cake is positioned parallel to the domain and displaced vertically from the domain by an appropriate displacement. The proper positioning of the cake is facilitated by a sensing mechanism for sensing the attitude of the cake with respect to the domain and a leveling mechanism, responsive to the sensing mechanism, for adjusting that attitude. A preferred sensing mechanism includes laser sources aimed at photodiode detectors: when the cake is properly positioned, the beams of light from the lasers are partially blocked. A preferred leveling mechanism includes adjustable legs supporting the table whereon the cake is placed under the print head.
    Type: Grant
    Filed: March 7, 1997
    Date of Patent: August 18, 1998
    Inventors: Ruth Ben-Matitayhu, Boris Sverdlov, Ilena Brailovski