Patents by Inventor Borzooye Jafarizadeh

Borzooye Jafarizadeh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12292346
    Abstract: The subject invention is concerned with systems and methods advantageously applying finite element analysis to establish design rules for a highly sensitive piezo-resistive pressure sensor with an output that is high enough to be detectable by simple and inexpensive circuits and therefore ensure wearability. Four frequently reported micro-feature shapes in micro-patterned piezo-resistive sensors are provided, where the micro-dome and micro-pyramid yield the highest sensitivity. Investigations of different conductivity values of micro-patterned elastomers show that coating the elastomer with a conductive material (e.g., a metallic coating) leads to higher current response when compared to composited conductive elastomers. Advantageous geometric parameters and spatial configurations of micro-pyramid design of piezo-resistive sensors are provided.
    Type: Grant
    Filed: August 27, 2024
    Date of Patent: May 6, 2025
    Assignee: The Florida International University Board of Trustees
    Inventors: Chunlei Wang, Borzooye Jafarizadeh, Azmal Chowdhury, Iman Khakpour, Nezih Pala
  • Publication number: 20240418584
    Abstract: The subject invention is concerned with systems and methods advantageously applying finite element analysis to establish design rules for a highly sensitive piezo-resistive pressure sensor with an output that is high enough to be detectable by simple and inexpensive circuits and therefore ensure wearability. Four frequently reported micro-feature shapes in micro-patterned piezo-resistive sensors are provided, where the micro-dome and micro-pyramid yield the highest sensitivity. Investigations of different conductivity values of micro-patterned elastomers show that coating the elastomer with a conductive material (e.g., a metallic coating) leads to higher current response when compared to composited conductive elastomers. Advantageous geometric parameters and spatial configurations of micro-pyramid design of piezo-resistive sensors are provided.
    Type: Application
    Filed: August 27, 2024
    Publication date: December 19, 2024
    Applicant: The Florida International University Board of Trustees
    Inventors: Chunlei Wang, Borzooye Jafarizadeh, Azmal Chowdhury, Iman Khakpour, Nezih Pala
  • Patent number: 12092536
    Abstract: The subject invention is concerned with systems and methods advantageously applying finite element analysis to establish design rules for a highly sensitive piezo-resistive pressure sensor with an output that is high enough to be detectable by simple and inexpensive circuits and therefore ensure wearability. Four frequently reported micro-feature shapes in micro-patterned piezo-resistive sensors are provided, where the micro-dome and micro-pyramid yield the highest sensitivity. Investigations of different conductivity values of micro-patterned elastomers show that coating the elastomer with a conductive material (e.g., a metallic coating) leads to higher current response when compared to composited conductive elastomers. Advantageous geometric parameters and spatial configurations of micro-pyramid design of piezo-resistive sensors are provided.
    Type: Grant
    Filed: April 14, 2023
    Date of Patent: September 17, 2024
    Assignee: The Florida International University Board of Trustees
    Inventors: Chunlei Wang, Borzooye Jafarizadeh, Azmal Chowdhury, Iman Khakpour, Nezih Pala
  • Patent number: 11737507
    Abstract: Sensors, actuators, energy sources, and data processing for enabling artificial intelligent (AI) integrated automated features of intelligent electronic shoes are provided. The intelligent footwear can gather information from the shoe and send the data to a user interface for monitoring the physical activities of the wearer. A smart thermal actuation system can control the internal temperature of the shoe to offer a comfortable experience to the user. Intelligent footwear can also have systems for multipurpose sensing and actuation modules, which can use energy harvested by the user locomotion or by an energy source accompanied by artificial intelligence to gather and process information for ensuring an enhanced user experience.
    Type: Grant
    Filed: October 28, 2022
    Date of Patent: August 29, 2023
    Assignee: THE FLORIDA INTERNATIONAL UNIVERSITY BOARD OF TRUSTEES
    Inventors: Azmal Chowdhury, Borzooye Jafarizadeh, Nezih Pala, Chunlei Wang